Преобразование коэффициентов у вероятности и наоборот. Формулы. Вероятность события. Определение вероятности события

Для вычисления вероятности Р А события А необходимо построить математическую модель изучаемого объекта, которая содержит событие А. Основой модели является вероятностное пространство (,?,Р), где - пространство элементарных событий, ? - класс событий с введенными над ними операциями композиции,

Вероятность любого события А, имеющего смысл в и входящего в класс событий? 25. Если, например,

то из аксиомы 3, вероятностей, следует, что

Таким образом, вычисление вероятности события А, сведено к вычислению вероятностей элементарных событий, его составляющих, а так как они являются «базовыми», то методы их вычисления не обязаны зависить от аксиоматики теории вероятностей.

Здесь рассмотрены три подхода к вычислению вероятностей элементарных событий:

классический;

геометрический;

статистический или частотный.

Классический метод вычисления вероятностей

Из аксиоматического определения вероятности следует, что вероятность существует для любого события А, но как ее вычислить, об этом ничего не говорится, хотя известно, что для каждого элементарного события i существует вероятность рi, такая, что сумма вероятностей всех элементарных событий пространства равна единице, то есть

На использовании этого факта основан классический метод вычисления вероятностей случайных событий, который в силу своей специфичности, дает способ нахождения вероятностей этих событий непосредственно из аксиом.

Пусть дано фиксированное вероятностное пространство (,?,Р), в котором:

  • а) состоит из конечного числа n элементарных событий,
  • б) каждому элементарному событию i поставлена в соответствие вероятность

Рассмотрим событие А, которое состоит из m элементарных событий:

тогда из аксиомы 3 вероятностей, в силу несовместности элементарных событий, следует, что

Тем самым имеем формулу

которую можно интерпретировать следующим образом: вероятность событию А произойти равна отношению числа элементарных событий, благоприятствующих появлению событию А, к числу всех элементарных событий из.

В этом суть классического метода вычисления вероятностей событий.

Замечание. Приписав одинаковую вероятность каждому из элементарных событий пространства, мы, с одной стороны, имея вероятностное пространство и опираясь на аксиомы теории вероятностей, получили правило вычисления вероятностей любых случайных событий из пространства по формуле (2), с другой стороны, это дает нам основание считать все элементарные события равновозможными и вычисление вероятностей любых случайных событий из свести к «урновой» схеме независимо от аксиом.

Из формулы (2) следует, что вероятность события А зависит только от числа элементарных событий, из которых оно состоит и не зависит от их конкретного содержания. Таким образом, чтобы воспользоваться формулой (2), необходимо найти число точек пространства и число точек, из которых состоит событие А, но тогда это уже задача комбинаторного анализа.

Рассмотрим несколько примеров.

Пример 8. В урне из n шаров - k красных и (n - k) черных. Наудачу извлекаем без возвращения r шаров. Какова вероятность того, что в выборке из r шаров s шаров - красных?

Решение. Пусть событие {А} {в выборке из r шаров s - красных}. Искомая вероятность находится по классической схеме, формула (2):

где - число возможных выборок объема r, которые различаются хотя бы одним номером шара, а m - число выборок объема r, в которых s шаров красных. Для, очевидно, число возможных вариантов выборки равно, а m, как следует из примера 7, равно

Таким образом, искомая вероятность равна

Пусть дан набор попарно несовместных событий As,

образующих полную группу, тогда

В этом случае говорят, что имеем распределение вероятностей событий As.

Распределения вероятностей является одним из фундаментальных понятий современной теории вероятностей и составляет основу аксиомами Колмагорова.

Определение. Распределение вероятностей

определяется гипергеометрическое распределение.

Боровков А.А. в своей книге на примере формулы (3) поясняет природу задач теории вероятностей и математической статистики следующим образом: зная состав генеральной совокупности, мы с помощью гипергеометрического распределения можем выяснить, каким может быть состав выборки - это типичная задача теории вероятностей (прямая задача). В естественных науках решают обратную задачу: по составу выборок, определяют природу генеральных совокупностей - это обратная задача, и она, образно говоря, составляет содержание математической статистики.

Обобщением биномиальных коэффициентов (сочетаний) являются полиномиальные коэффициенты, которые своим названием обязаны разложению полинома вида

по степеням слагаемых.

Полиномиальные коэффициенты (4) часто применяются при решении комбинаторных задач.

Теорема. Пусть имеется k различных ящиков, по которым раскладываются пронумерованные шары. Тогда число размещений шаров по ящикам так, чтобы в ящике с номером r находилось ri шаров,

определяется полиномиальными коэффициентами (4).

Доказательство. Поскольку порядок расположения ящиков важен, а шаров в ящиках - не важен, то для подсчета размещений шаров в любом ящике можно воспользоваться сочетаниями.

В первом ящике r1 шаров из n можно выбрать способами, во втором ящике r2 шаров, из оставшихся (n - r1) можно выбрать способами и так далее, в (k - 1) ящик rk-1 шаров выбираем

способами; в ящик k - оставшиеся

шаров попадают автоматически, одним способом.

Таким образом, всего размещений будет

Пример. По n ящикам случайно распределяются n шаров. Считая, что ящики и шары различимы, найти вероятности следующих событий:

  • а) все ящики не пустые = А0;
  • б) один ящик пуст = А1;
  • в) два ящика пустых = А2;
  • г) три ящика пустых = А3;
  • д) (n-1) - ящик пуст = А4.

Решить задачу для случая n = 5.

Решение. Из условия следует, что распределение шаров по ящикам есть простой случайный выбор, следовательно, всех вариантов nn.

Эта последовательность означает, что в первом, втором и третьем ящиках по три шара, в четвертом и пятом по два шара, в остальных (n - 5) ящиках по одному шару. Всего таких размещений шаров по ящикам будет

Так как шары на самом деле различимы, то на каждую такую комбинацию будем иметь

размещений шаров. Таким образом, всего вариантов будет

Переходим к решению по пунктам примера:

а) так как в каждом ящике находится по одному шару, то имеем последовательность 111…11, для которой число размещений равно n!/ n! = 1. Если шары различимы, то имеем n!/ 1! размещений, следовательно, всего вариантов m = 1n!= n!, отсюда

б) если один ящик пуст, то какой-то ящик содержит два шара, тогда имеем последовательность 211…10, для которой число размещений равно n! (n-2)!. Так как шары различимы, то для каждой такой комбинации имеем n!/ 2! размещений. Всего вариантов

в) если два ящика пусты, то имеем две последовательности: 311…100 и 221…100. Для первой число размещений равно

n!/ (2! (n - 3)!).

На каждую такую комбинацию имеем n!/ 3! размещений шаров. Итак, для первой последовательности, число вариантов равно

Для второй последовательности всего вариантов будет

Окончательно имеем

г) для трех пустых ящиков будет три последовательности: 411…1000, либо 3211…1000, либо 22211…1000.

Для первой последовательности имеем

Для второй последовательности

Для третьей последовательности получаем

Всего вариантов

m = k1 + k2 + k3,

Искомая вероятность равна

д) если (n -1) ящик пуст, то все шары должны находиться в одном из ящиков. Очевидно, что число комбинаций равно

Соответствующая этому событию вероятность равна

При n = 5, имеем

Заметим, что при n = 5 события Аi должны образовывать полную группу, что соответствует действительности. В самом деле

Знать, как оценить вероятность того или иного события на основе коэффициентов, крайне важно для выбора правильной ставки. Если вы не понимаете, как перевести букмекерский коэффициент в вероятность, то никогда не сможете определить, как соотносится букмекерский коэффициент с реальными шансами того, что событие состоится. Следует понимать, если вероятность события по версии букмекеров ниже, чем вероятность этого же события по вашей собственной версии, ставка на это событие будет ценной. Сравнить коэффициенты на разные события можно на сайте Odds.ru .

1.1. Типы коэффициентов

Букмекерские конторы, как правило, предлагают три типа коэффициентов – десятичный, дробный и американский. Разберем каждую из разновидностей.

1.2. Десятичные коэффициенты

Десятичные коэффициенты при умножении на размер ставки позволяют рассчитать всю сумму, которую вы получите на руки в случае выигрыша. К примеру, если вы поставили 1 доллар на коэффициент 1,80, в случае выигрыша вы получите 1 доллар 80 центов (1 доллар – возвращенная сумма ставки, 0,80 – выигрыш по ставке, он же ваша чистая прибыль).

То есть вероятность исхода, по версии букмекеров, составляет 55%.

1.3. Дробные коэффициенты

Дробные коэффициенты – наиболее традиционный вид коэффициентов. В числителе показана потенциальная сумма чистого выигрыша. В знаменателе – сумма ставки, которую нужно сделать, чтобы этот самый выигрыш получить. К примеру, коэффициент 7/2 означает, что для того, чтобы получить чистый выигрыш в размере 7 долларов, вам необходимо поставить 2 доллара.

Для того чтобы рассчитать вероятность события на основе десятичного коэффициента, следует провести простые вычисления – знаменатель разделить на сумму числителя и знаменателя. Для вышеобозначенного коэффициента 7/2 расчет будет таким:

2 / (7+2) = 2 / 9 = 0,22

То есть вероятность исхода, по версии букмекеров, составляет 22%.

1.4. Американские коэффициенты

Данный вид коэффициентов популярен в Северной Америке. На первый взгляд, они кажутся довольно сложными и непонятными, но не стоит пугаться. Понимание американских коэффициентов может вам пригодиться, например, при игре в американских казино, для понимания котировок, демонстрируемых в североамериканских спортивных трансляциях. Разберем, как оценить вероятность исхода на основе американских коэффициентов.

В первую очередь надо понимать, что американские коэффициенты бывают положительными и отрицательными. Отрицательный американский коэффициент всегда идет в формате, к примеру, «-150». Это означает, что для того, чтобы получить 100 долларов чистой прибыли (выигрыш), необходимо поставить 150 долларов.

Положительный американский коэффициент рассчитывается наоборот. К примеру, у нас есть коэффициент «+120». Это означает, что для того, чтобы получить 120 долларов чистой прибыли (выигрыш), вам необходимо поставить 100 долларов.

Расчет вероятности на основе отрицательных американских коэффициентов делается по следующей формуле:

(-(отрицательный американский коэффициент)) / ((-(отрицательный американский коэффициент)) + 100)

(-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0,6

То есть вероятность события, на которое дается отрицательный американский коэффициент «-150», составляет 60%.

Теперь рассмотрим аналогичные вычисления для положительного американского коэффициента. Вероятность в этом случае рассчитывается по следующей формуле:

100 / (положительный американский коэффициент + 100)

100 / (120 + 100) = 100 / 220 = 0.45

То есть вероятность события, на которое дается положительный американский коэффициент «+120», составляет 45%.

1.5. Как переводить коэффициенты из одного формата в другой?

Умение переводить коэффициенты из одного формата в другой может впоследствии сослужить вам хорошую службу. Как ни странно, до сих пор есть конторы, в которых коэффициенты не конвертируются и показаны лишь в одном, непривычном для нас формате. Рассмотрим на примерах, как это делать. Но для начала нам надо научиться вычислять вероятность исхода на основе данного нам коэффициента.

1.6. Как на основе вероятности рассчитать десятичный коэффициент?

Здесь все очень просто. Необходимо 100 разделить на вероятность события в процентном отношении. То есть, если предполагаемая вероятность события составляет 60%, вам надо:

При предполагаемой вероятности события в 60% десятичный коэффициент будет составлять 1,66.

1.7. Как на основе вероятности рассчитать дробный коэффициент?

В данном случае необходимо 100 разделить на вероятность события и от полученного результата отнять единицу. К примеру, вероятность события составляет 40%:

(100 / 40) — 1 = 2,5 — 1 = 1,5

То есть мы получаем дробный коэффициент 1,5/1 или, для удобства счета, – 3/2.

1.8. Как на основе вероятного исхода рассчитать американский коэффициент?

Здесь многое будет зависеть от вероятности события – будет ли она более 50% или менее. Если вероятность события более 50%, то расчет будет производиться по такой формуле:

— ((вероятность) / (100 — вероятность)) * 100

Например, если вероятность события составляет 80%, то:

— (80 / (100 — 80)) * 100 = — (80 / 20) * 100 = -4 * 100 = (-400)

При предполагаемой вероятности события в 80% мы получили отрицательный американский коэффициент «-400».

Если вероятность события менее 50 процентов, то формула будет следующей:

((100 — вероятность) / вероятность) * 100

Например, если вероятность события составляет 40%, то:

((100-40) / 40) * 100 = (60 / 40) * 100 = 1,5 * 100 = 150

При предполагаемой вероятности события в 40% мы получили положительный американский коэффициент «+150».

Эти вычисления помогут вам лучше понять концепцию ставок и коэффициентов, научиться оценивать истинную стоимость той или иной ставки.

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Объединением (логической суммой) N событий называют событие, которое наблюдается каждый раз, когда на­ступаетхотя бы одно из событий. В частности, объединением событий A и B называют событие A + B (у некоторых авторов
), которое наблюдается, когданаступает или A, или B или оба этих события одновременно (Рис. 7). Признаком пересечения в тексто­вых формулировках событий служит союз“или” .

Рис. 7. Объединение событий A+B

Необходимо учитывать, что вероятности события P{A} соответствует как левая часть заштрихованной на Рис. 7 фигуры, так и её центральная часть, помеченная как
. И исходы, соответствующие событию B, располагаются как в правой части заштрихованной фигуры, так и в помеченной
центральной части. Таким образом, при сложениииплощадка
реально войдет в эту сумму дважды, а точное выражение для площади заштрихованнойфигуры имеет вид
.

Итак, вероятность объединения двух событий A и B равна

Для большего числа событий общее расчетное выражение становится крайне громоздким из-за необходимости учета многочисленных вариантов взаимного наложения областей. Однако, если объединяемые события являются несовместными (см. с. 33), то взаимное наложение областей оказывается невозможным, а благоприятная зона определяется непосредственно суммой областей, соответствующих отдельным событиям.

Вероятность объединения произвольного числанесов­местных событийопределяется выражением

Следствие 1 : Полная группа событий состоит из событий несовместных, одно из которых в опыте обязательно реализуется. В результате,если события
,образуют полную группу , то для них

Таким образом,

С ледствие 3 Учтем, что противоположным утверждению «произойдет хотя бы одно из событий
» является утверждение «ни одно из событий
не реализуется». Т.е., иначе говоря, «в опыте будут наблюдаться события, и, и …, и», что представляет собой уже пересечение событий, противоположных исходному набору. Отсюда, с учетом (2 .0), для объединения произвольного числа событий получаем

Следствия 2, 3 показывают, что в тех случаях, когда непосредственный расчет вероятности какого-то события является проблематичным, полезно оценить трудоёмкость исследования события ему противоположного. Ведь, зная значение
, получить из (2 .0) нужную величину
никакого труда уже не представляет.

    1. Примеры расчетов вероятностей сложных событий

Пример 1 : Двое студентов (Иванов и Петров) вместе я вились на защиту лабораторной работы, выучив первые 8 кон трольных вопросов к этой работе из 10 имеющихся. Проверяя подготовленность, п реподаватель задает каждому лишь оди н случайно выбираемый вопрос. Определить вероятность следующих событий:

A = “Иванов защитит лабораторную работу”;

B = “Петров защитит лабораторную работу”;

C = “оба защитят лабораторную работу”;

D = “хотя бы один из студентов защитит работу”;

E = “только один из студентов защитит работу”;

F = “никто из них не защитит работу”.

Решение. Отметим, что способность защитить работу как Иванова, т ак и Петрова в отдельности определяется лишь числом освоенных вопросов, поэтом у . (Примечание: в данном примере значения получаемых дробей сознательно не сокращались для упрощения сопоставления результатов расчетов.)

Событие C можно сформулировать иначе как «работу защитит и Иванов, и Петров», т.е. произойдут и событие A , и событие B . Таким образом, событие C является пересечением событий A и B , и в соответствии с (2 .0)

где сомножитель “7/9” появляется из-за того, что наступление события A означает, что Иванову достался «удачный» вопрос, а значит на долю Петрова из оставшихся 9 вопросов приходится теперь лишь 7 «хороших» вопросов.

Событие D подразумевает, что «работу защитит или Иванов, или Петров, или они оба вместе», т.е. произойдёт хотя бы одно из событий A и B . Итак, событие D является объединением событий A и B , и в соответствии с (2 .0)

что соответствует ожиданиям, т.к. даже для каждого из студентов в отдельности шансы на успех довольно велики.

С обытие Е означает, что «либо работу защитит Ивано в, а Петров «п ровалится», или Иванову попадется неудачный во прос, а Петров с защитой справится». Два альтернативных варианта являются взаимоисключающими (несовместными), поэтому

Наконец, утверждение F окажется справедливым лишь если « и Иванов, и Петров с защитой не справятся». Итак,

На этом решение задачи завершено, однако полезно отметить следующие моменты:

1. Каждая из полученных вероятностей удовлетворяет условию (1 .0), н о если для
и
получить конфликт
ующие с (1 .0) в принципе невозможно, то для
попытка и
спользования (2 .0) вместо (2 .0) привела бы к явно некорр ектному значению
. Важно помнить, что подобное значение вероятности принципиально невозможно, и при получении столь парадоксального результата незамедлительно приступать к поиску ошибки.

2. Найденные вероятности удовлетворяют соотношения м

.

Э то вполне ожидаемо, т.к. события C , E и F образуют полн ую группу, а события D и F противоположны друг другу. Учет этих соотношений с одной стороны может быть использо ван для перепроверки расчетов, а в другой ситуации может послужить основой альтернативного способа решения задачи.

П римечание : Не пренебрегайте письменной фиксацией точной формулировки события, иначе по ходу решения задачи Вы можете непроизвольно перейти к иной трактовке смысла этого события, что повлечет ошибки в рассуждениях.

Пример 2 : В крупной партии микросхем, не прошедших выходной контроль качества, 30% изделий являются бракованными. Если из этой партии наугад выбрать какие-либо две микросхемы, то какова вероятность, что среди них:

A = “обе годные”;

B = “ровно 1 годная микросхема”;

C = “обе бракованные”.

Проанализируем следующий вариант рассуждений (осторожно, содержит ошибку):

Так как речь идет о крупной партии изделий, то изъятие из неё нескольких микросхем практически не влияет на соотношение числа годных и бракованных изделий, а значит, выбирая несколько раз подряд какие-то микросхемы из этой партии, можно считать, что в каждом из случаев остаются неизменными вероятности

= P { выбрано бракованное изделие } = 0,3 и

= P { выбрано годное изделие } = 0,7.

Для наступления события A необходимо, чтобы и в первый, и во второй раз было выбрано годное изделии, а потому (учитывая независимость друг от друга успешности выбора первой и второй микросхемы) для пересечения событий имеем

Аналогично, для наступления события С нужно, чтобы оба изделия оказались бракованными , а для получения B нужно один раз выбрать годное, а один – бракованное изделие.

Признак ошибки. Х отя все полученные выше вероятност и выглядят правдоподобными, при их совместном анализе легко з аметить, что .Однако случаи A , B и C образуют полную группу событий, для которой должно выполняться .Это противоречие указывает на наличие какой-то ошибки в рассуждениях.

С уть ошибки. Введем в рассмотрение два вспомогате льных события :

= “первая микросхема – годная, вторая - бракованная”;

= “первая микросхема – бракованная, вторая – годная”.

Очевидно, что , однако именно такой вариант расчета был выше использован для получения вероятности события B , хотя события B и не являются э квивалентными . На самом деле,
, т.к. формулировка
события B требует, чтобы среди микросхем ровно одна , но совсем не обязательно первая была годной (а другая – бракованной). Поэтому, хотя событие не является дублем события, а должно учиты ваться независимо. Учитывая несовместность событий и, вероятность их логической суммы будет равна

После указанного исправления расчетов имеем

что косвенно подтверждает корректность найденных вероятностей.

Примечание : Обращайте особое внимание на отличие в формулировках событий типа “только первый из перечисленных элементов должен…” и “только один из перечисленных элем ентов должен…”. Последнее событие явно шире и включае т в свой состав первое как один из (возможно многочисленны х) вариантов. Эти альтернативные варианты (даже при совпадении их вероятностей) следует учитывать независимо друг от друга.

П римечание : Слово “процент” произошло от “ per cent ”, т.е. “на сотню”. Представление частот и вероятностей в процентах позволяет оперировать более крупными значениями, что иногда упрощает восприятие значений “на слух”. Однако использовать в расчетах для правильной нормировки умножение или деление на “100 %” громоздко и неэффективно. В связи с этим, не з абывайте при использовании значений, упомя нутых в процентах, подставлять их в расчетные выражения у же в виде долей от единицы (например, 35% в расчете записываетс я как “0,35”), чтобы минимизировать риск ошибочной нормировки результатов.

Пример 3 : Набор резисторов содержит один резистор н оминалом 4 кОм, три резистора по 8 кОм и шесть резист оров с сопротивлением 15 кОм. Выбранные наугад три резистора соединяются друг с другом параллельно. Определить вероятность получения итогового сопротивления, не превышающего 4 кОм.

Реш ение. Сопротивление параллельного соединения рез исторов может быть рассчитано по формуле

.

Это позволяет ввести в рассмотрение события, такие как

A = “выбраны три резистора по 15 кОм” = “
;

B = “в зяты два резистора по 15 кОм и один с сопротивление м 8 кОм” =“

Полная группа событий, соответствующих условию задачи, включает ещё целый ряд вариантов, причем именно таких, к оторые соответствуют выдвинутому требованию о получении сопротивления не более чем 4 кОм. Однако, хотя “прямой” путь решения, предполагающий расчет (и последующее сумми рование) вероятностей, характеризующих все эти события, и является правильным, действовать таким образом нецелесообразно.

Отметим, что для получения итогового сопротивления менее 4 кОм д остаточно, чтобы в используемый набор вошел хотя бы один резистор с сопротивлени ем менее 15 кОм. Таким образом, лишь в случае A требование задачи не выполняется, т.е. событие A является противоположным исследуемому. Вместе с тем,

.

Таким образом, .

П ри мечание : Рассчитывая вероятность некоторого события A , не забывайте проанализировать трудоемкость определени я ве­роятности события ему противоположного. Если расс читать
легко, то именно с этого и надо начинать решен ие задачи , завершая его применением соотношения (2 .0).

П ример 4 : В коробке имеются n белых, m черных и k красных шаров. Шары по одному наугад извлекаются из коробки и возвращаются обратно после каждого извлечения. Определить вероятность события A = “белый шар будет извлечен раньше, чем черный .

Реш ение. Рассмотрим следующую совокупность событий

= “белый шар извлекли при первой же попытке”;

= “сначала вынули красный шар, а затем - белый”;

= “дважды вынули красный шар, а на третий раз - белый ”…

Так к ак шарики возвращаются, то последовательность соб ытий может быть формально бесконечно протяженной.

Эти события являются несовместными и составляют в совокупности тот набор ситуаций, при которых происходит событие A . Таким образом,

Несложно заметить, что входящие в сумму слагаемые образуют геометрическую прогрессию с начальным элементом
и знаменателем
. Но сумм
а элементов бесконечной геометрической прогрессии равна

.

Таким образом, . Л юбопытно, что эта вероятность (как следует из полученно го выражения) не зависит от числа красных шаров в коробке.

ТЕМА 1 . Классическая формула вычисления вероятности.

Основные определения и формулы:

Эксперимент, исход которого невозможно предсказать, называют случайным экспериментом (СЭ).

Событие, которое в данном СЭ может произойти, а может и не произойти, называют случайным событием .

Элементарными исходами называют события, удовлетворяющие требованиям:

1.при всякой реализации СЭ происходит один и только один элементарный исход;

2.всякое событие есть некоторая комбинация, некоторый набор элементарных исходов.

Множество всех возможных элементарных исходов полностью описывает СЭ. Такое множество принято называть пространством элементарных исходов (ПЭИ). Выбор ПЭИ для описания данного СЭ неоднозначен и зависит от решаемой задачи.

Р(А) = n (A ) / n ,

где n – общее число равновозможных исходов,

n (A ) – число исходов, составляющих событие А, как говорят еще, благоприятствующих событию А.

Слова “наудачу”, “наугад”, “случайным образом” как раз и гарантируют равновозможность элементарных исходов.

Решение типовых примеров

Пример 1. Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:

А – “все извлеченные шары красные”;

В – “ все извлеченные шары – одного цвета”;

С – “среди извлеченных ровно 2 черных”.

Решение:

Элементарным исходом данного СЭ является тройка (неупорядоченная!) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).

Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n (A )== 10.

Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n (B )=10+1=11.

Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый способ выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n (C ) = = 3 * 7 = 21.

Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120.

Пример 2. В условиях предыдущей задачи будем считать, что шары каждого цвета имеют свою нумерацию, начиная с 1. Найти вероятности событий:

D – “максимальный извлеченный номер равен 4”;

Е – “ максимальный извлеченный номер равен 3”.

Решение:

Для вычисления n (D ) можно считать, что в урне есть один шар с номером 4, один шар с большим номером и 8 шаров (3к+3ч+2б) с меньшими номерами. Событию D благоприятствуют те тройки шаров, которые обязательно содержат шар с номером 4 и 2 шара с меньшими номерами. Поэтому: n (D ) =

P (D ) = 28/120.

Для вычисления n (Е) считаем: в урне два шара с номером 3, два с большими номерами и шесть шаров с меньшими номерами (2к+2ч+2б). Событие Е состоит из троек двух типов:

1.один шар с номером 3 и два с меньшими номерами;

2.два шара с номером 3 и один с меньшим номером.

Поэтому: n (E )=

Р(Е) = 36/120.

Пример 3. Каждая из М различных частиц бросается наудачу в одну из N ячеек. Найти вероятности событий:

А – все частицы попали во вторую ячейку;

В – все частицы попали в одну ячейку;

С – каждая ячейка содержит не более одной частицы (M £ N );

D – все ячейки заняты (M =N +1);

Е – вторая ячейка содержит ровно к частиц.

Решение:

Для каждой частицы имеется N способов попасть в ту или иную ячейку. По основному принципу комбинаторики для М частиц имеем N *N *N *…*N (М-раз). Итак, общее число исходов в данном СЭ n = N M .

Для каждой частицы имеем одну возможность попасть во вторую ячейку, поэтому n (A ) = 1*1*…*1= 1 М = 1, и Р(А) = 1/ N M .

Попасть в одну ячейку (всем частицам) означает попасть всем в первую, или всем во вторую, или и т.д. всем в N -ю. Но каждый из этих N вариантов может осуществиться одним способом. Поэтому n (B )=1+1+…+1(N -раз)=N и Р(В)=N /N M .

Событие С означает, что у каждой частицы число способов размещения на единицу меньше, чем у предыдущей частицы, а первая может попасть в любую из N ячеек. Поэтому:

n (C ) = N *(N -1)*…*(N +M -1) и Р(С) =

В частном случае при M =N : Р(С)=

Событие D означает, что одна из ячеек содержит две частицы, а каждая из (N -1) оставшихся ячеек содержит по одной частице. Чтобы найти n (D ) рассуждаем так: выберем ячейку в которой будет две частицы, это можно сделать =N способами; затем выберем две частицы для этой ячейки, для этого существует способов. После этого оставшиеся (N -1) частиц распределим по одной в оставшиеся (N -1) ячеек, для этого имеется (N -1)! способов.

Итак, n (D ) =

.

Число n (E ) можно подсчитать так: к частиц для второй ячейки можно способами, оставшиеся (М – К) частиц распределяются произвольным образом по (N -1) ячейке (N -1) М-К способами. Поэтому: