Основатель квантовой механики. Основанные

КВАНТОВАЯ МЕХАНИКА
фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую основу, на которой строится современная теория атомов, атомных ядер, молекул и физических тел, а также элементарных частиц, из которых все это состоит. Квантовая механика была создана учеными, стремившимися понять, как устроен атом. Атомные процессы в течение многих лет изучали физики и особенно химики; при изложении данного вопроса мы будем, не вдаваясь в подробности теории, следовать историческому ходу развития предмета. См. также АТОМ .
Зарождение теории. Когда Э.Резерфорд и Н.Бор предложили в 1911 ядерную модель атома, это было подобно чуду. В самом деле, она была построена из того, что было известно уже более 200 лет. Это была, в сущности, коперниковская модель Солнечной системы, воспроизведенная в микроскопическом масштабе: в центре находится тяжелая масса, вскоре получившая название ядра, вокруг которой вращаются электроны, числом которых определяются химические свойства атома. Но мало того, за этой наглядной моделью стояла теория, которая позволила начать расчеты некоторых химических и физических свойств веществ, по крайней мере построенных из наименьших и наиболее простых атомов. Теория Бора - Резерфорда содержала ряд положений, которые здесь полезно напомнить, поскольку все они в том или ином виде сохранились и в современной теории. Во-первых, важен вопрос о природе сил, связывающих атом. С 18 в. было известно, что электрически заряженные тела притягивают или отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними. Используя в качестве пробных тел альфа-частицы, возникающие в результате радиоактивных превращений, Резерфорд показал, что тот же самый закон электрического взаимодействия (закон Кулона) справедлив в масштабах, в миллион миллионов раз меньших тех, для которых он был первоначально экспериментально установлен. Во-вторых, нужно было ответить на вопрос о том, как электроны движутся по орбитам под действием этих сил. Здесь вновь опыты Резерфорда, казалось бы, показывали (и Бор принял это в своей теории), что законы движения Ньютона, сформулированные в его Началах (Principia Mathematica, 1687), можно использовать для описания движения частиц в этих новых масштабах микромира. В-третьих, вставал вопрос о стабильности. В ньютоновско-кулоновском атоме, как и в Солнечной системе, размеры орбит произвольны и зависят лишь от того, каким образом система была первоначально приведена в движение. Однако все атомы одного вещества одинаковы и к тому же стабильны, что совсем необъяснимо с точки зрения старых представлений. Бор высказал предположение, что атомные электроны следует рассматривать как движущиеся вокруг ядра лишь по определенным орбитам, которым отвечают определенные энергетические уровни, причем они должны испускать квант энергии в виде света, переходя с орбиты с более высокой энергией на орбиту с меньшей энергией. Такие "условия квантования" не вытекали ни из каких экспериментальных данных или теорий; они были приняты как постулаты. На основе этих концептуальных элементов, дополненных только что развитыми в то время представлениями М.Планка и А.Эйнштейна о природе света, Бору удалось количественно объяснить весь спектр излучения атомов водорода в газоразрядной трубке и дать качественное объяснение всех основных закономерностей периодической системы элементов. К 1920 пришло время взяться за проблему спектра излучения более тяжелых атомов и вычислить интенсивность химических сил, связывающих атомы в соединениях. Но здесь иллюзия успеха померкла. На протяжении ряда лет Бор и другие исследователи безуспешно пытались рассчитать спектр гелия - следующего за водородом простейшего атома с двумя электронами. Сначала вообще ничего не получалось; в конце концов несколько исследователей различными способами решили эту задачу, но ответ оказался неверным - он противоречил эксперименту. Затем выяснилось, что вообще невозможно построить сколько-нибудь приемлемую теорию химического взаимодействия. К началу 1920-х годов теория Бора исчерпала себя. Пришло время признать справедливость пророческого замечания, которое Бор еще в 1914 сделал в письме другу в присущем ему замысловатом стиле: "Я склонен полагать, что проблема связана с исключительно большими трудностями, которые можно будет преодолеть, лишь гораздо дальше отойдя от обычных соображений, чем требовалось до сих пор, и что достигнутый ранее успех был обусловлен исключительно простотой рассматривавшихся систем".
См. также
БОР Нильс Хенрик Давид ;
СВЕТ ;
РЕЗЕРФОРД Эрнест ;
СПЕКТРОСКОПИЯ .
Первые шаги. Поскольку использованная Бором комбинация существовавших ранее представлений из области электричества и механики с условиями квантования привела к неверным результатам, все это нужно было полностью или частично изменить. Основные положения теории Бора были приведены выше, а для соответствующих расчетов было достаточно не очень сложных выкладок с использованием обычной алгебры и математического анализа. В 1925 молодой немецкий физик В.Гейзенберг посетил Бора в Копенгагене, где провел с ним долгие часы в беседах, выясняя, что из теории Бора обязательно должно войти в будущую теорию, а от чего в принципе можно и отказаться. Бор и Гейзенберг сразу же согласились, что в будущей теории обязательно должно быть представлено все непосредственно наблюдаемое, а все не поддающееся наблюдению может быть изменено или исключено из рассмотрения. С самого начала Гейзенберг считал, что следует сохранить атомы, но орбиту электрона в атоме считать абстрактной идеей, поскольку ни один эксперимент не позволяет определить электронную орбиту по результатам измерений наподобие того, как это можно сделать для орбит планет. Читатель может заметить, что тут есть определенная нелогичность: строго говоря, атом столь же ненаблюдаем непосредственно, как и электронные орбиты, и вообще в нашем восприятии окружающего мира нет ни одного ощущения, которое не требовало бы разъяснения. В наши дни физики все чаще цитируют известный афоризм, который был впервые произнесен Эйнштейном в беседе с Гейзенбергом: "Что именно мы наблюдаем, нам говорит теория". Таким образом, различие между наблюдаемыми и ненаблюдаемыми величинами носит чисто практический характер, не имея никакого обоснования ни в строгой логике, ни в психологии, причем это различие, как бы оно ни проводилось, должно рассматриваться как часть самой теории. Поэтому гейзенберговский идеал теории, очищенной от всего ненаблюдаемого, есть некое направление мысли, но отнюдь не последовательный научный подход. Тем не менее он доминировал в атомной теории почти полвека после того, как был впервые сформулирован. Мы уже напоминали о составных элементах ранней модели Бора, таких, как закон Кулона для электрических сил, законы динамики Ньютона и обычные правила алгебры. Путем тонкого анализа Гейзенберг показал, что можно сохранить известные законы электричества и динамики, если найти надлежащее выражение для динамики Ньютона, а затем изменить правила алгебры. В частности, Гейзенберг высказал мысль, что, поскольку ни положение q, ни импульс p электрона не являются измеримыми величинами в том смысле, в каком ими являются, например, положение и импульс автомобиля, мы можем при желании сохранить их в теории, лишь рассматривая как математические символы, обозначаемые буквами, но не как числа. Он принял для p и q алгебраические правила, согласно которым произведение pq не совпадает с произведением qp. Гейзенберг показал, что простые расчеты атомных систем дают приемлемые результаты, если принять, что для положения q и импульса p выполняется соотношение

Где h - постоянная Планка, уже известная из квантовой теории излучения и фигурировавшая в теории Бора, а. Постоянная Планка h представляет собой обычное число, но очень малое, приблизительно 6,6Ч10-34 Дж*с. Таким образом, если p и q - величины обычного масштаба, то разность произведений pq и qp будет крайне мала по сравнению с самими этими произведениями, так что p и q можно считать обычными числами. Построенная для описания явлений микромира, теория Гейзенберга почти полностью согласуется с механикой Ньютона, когда ее применяют к макроскопическим объектам. Уже в самых ранних работах Гейзенберга было показано, что при всей неясности физического содержания новой теории она предсказывает существование дискретных энергетических состояний, характерных для квантовых явлений (например, для испускания света атомом). В более поздней работе, выполненной совместно с М. Борном и П. Йорданом в Геттингене, Гейзенберг развил формальный математический аппарат теории. Практические вычисления остались, однако, крайне сложными. После нескольких недель напряженной работы В.Паули вывел формулу для энергетических уровней атома водорода, совпадающую с формулой Бора. Но прежде чем удалось упростить вычисления, появились новые и совершенно неожиданные идеи. См. также
АЛГЕБРА АБСТРАКТНАЯ ;
ПЛАНКА ПОСТОЯННАЯ .
Частицы и волны. К 1920 физики были уже довольно хорошо знакомы с двойственной природой света: результаты одних экспериментов со светом можно было объяснить, предполагая, что свет представляет собой волны, а в других он вел себя подобно потоку частиц. Поскольку казалось очевидным, что ничто не может быть в одно и тоже время и волной, и частицей, ситуация оставалась непонятной, вызывая горячие споры в среде специалистов. В 1923 французский физик Л.де Бройль в опубликованных им заметках высказал предположение, что столь парадоксальное поведение, может быть, не является спецификой света, но и вещество тоже может в одних случаях вести себя подобно частицам, а в других подобно волнам. Исходя из теории относительности, де Бройль показал, что если импульс частицы равен p, то "ассоциированная" с этой частицей волна должна иметь длину волны l = h/p. Это соотношение аналогично впервые полученному Планком и Эйнштейном соотношению E = hn между энергией светового кванта Е и частотой n соответствующей волны. Де Бройль показал также, что эту гипотезу можно легко проверить в экспериментах, аналогичных опыту, демонстрирующему волновую природу света, и настойчиво призывал к проведению таких опытов. Заметки де Бройля привлекли внимание Эйнштейна, и к 1927 К.Дэвиссон и Л.Джермер в Соединенных Штатах, а также Дж. Томсон в Англии подтвердили для электронов не только основную идею де Бройля, но и его формулу для длины волны. В 1926 работавший тогда в Цюрихе австрийский физик Э. Шредингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей. Такая ситуация имеет свой аналог в истории оптики. Одной уверенности в том, что свет есть волна определенной длины, недостаточно для детального описания поведения света. Необходимо еще написать и решить выведенные Дж.Максвеллом дифференциальные уравнения, подробно описывающие процессы взаимодействия света с веществом и распространение света в пространстве в виде электромагнитного поля. Шредингер написал дифференциальное уравнение для материальных волн де Бройля, аналогичное уравнениям Максвелла для света. Уравнение Шредингера для одной частицы имеет вид


где m - масса частицы, Е - ее полная энергия, V(x) - потенциальная энергия, а y - величина, описывающая электронную волну. В ряде работ Шредингер показал, как можно использовать его уравнение для вычисления энергетических уровней атома водорода. Он установил также, что существуют простые и эффективные способы приближенного решения задач, не поддающихся точному решению, и что его теория волн материи в математическом отношении полностью эквивалентна алгебраической теории наблюдаемых величин Гейзенберга и во всех случаях приводит к тем же результатам. П.Дирак из Кембриджского университета показал, что теории Гейзенберга и Шредингера представляют собой лишь две из множества возможных форм теории. Теория преобразований Дирака, в которой важнейшую роль играет соотношение (1), обеспечила ясную общую формулировку квантовой механики, охватывающую все остальные ее формулировки в качестве частных случаев. Вскоре Дирак добился неожиданно крупного успеха, продемонстрировав, каким образом квантовая механика обобщается на область очень больших скоростей, т.е. приобретает вид, удовлетворяющий требованиям теории относительности. Постепенно стало ясно, что существует несколько релятивистских волновых уравнений, каждое из которых в случае малых скоростей можно аппрокcимировать уравнением Шредингера, и что эти уравнения описывают частицы совершенно разных типов. Например, частицы могут иметь разный "спин"; это предусматривается теорией Дирака. Кроме того, согласно релятивистской теории, каждой из частиц должна соответствовать античастица с противоположным знаком электрического заряда. В то время, когда вышла работа Дирака, были известны только три элементарные частицы: фотон, электрон и протон. В 1932 была открыта античастица электрона - позитрон. На протяжении нескольких последующих десятилетий было обнаружено много других античастиц, большинство из которых, как оказалось, удовлетворяли уравнению Дирака или его обобщениям. Созданная в 1925-1928 усилиями выдающихся физиков квантовая механика не претерпела с тех пор в своих основах каких-либо существенных изменений.
См. также АНТИВЕЩЕСТВО .
Приложения. Во всех разделах физики, биологии, химии и техники, в которых существенны свойства вещества в малых масштабах, теперь систематически обращаются к квантовой механике. Приведем несколько примеров. Всесторонне исследована структура электронных орбит, наиболее удаленных от ядра атомов. Методы квантовой механики были применены к проблемам строения молекул, что привело к революции в химии. Структура молекул обусловлена химическими связями атомов, и сегодня сложные задачи, возникающие при последовательном применении квантовой механики в этой области, решаются с помощью компьютеров. Большое внимание привлекли к себе теория кристаллической структуры твердых тел и особенно теория электрических свойств кристаллов. Практические результаты впечатляют: примерами их могут служить изобретение лазеров и транзисторов, а также значительные успехи в объяснении явления сверхпроводимости.
См. также
ФИЗИКА ТВЕРДОГО ТЕЛА ;
ЛАЗЕР ;
ТРАНЗИСТОР ;
СВЕРХПРОВОДИМОСТЬ . Многие проблемы еще не решены. Это касается структуры атомного ядра и физики элементарных частиц. Время от времени обсуждается вопрос о том, не лежат ли проблемы физики элементарных частиц за пределами квантовой механики, подобно тому как структура атомов оказалась вне области применимости динамики Ньютона. Однако до сих пор нет никаких указаний на то, что принципы квантовой механики или ее обобщения в области динамики полей где-то оказались неприменимыми. Более полувека квантовая механика остается научным инструментом с уникальной "объясняющей способностью" и не требует существенных изменений своей математической структуры. Поэтому может показаться удивительным, что до сих пор ведутся острые дебаты (см. ниже) по поводу физического смысла квантовой механики и ее истолкования.
См. также
АТОМА СТРОЕНИЕ ;
АТОМНОГО ЯДРА СТРОЕНИЕ ;
МОЛЕКУЛ СТРОЕНИЕ ;
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ .
Вопрос о физическом смысле. Корпускулярно-волновой дуализм, столь очевидный в эксперименте, создает одну из самых трудных проблем физической интерпретации математического формализма квантовой механики. Рассмотрим, например, волновую функцию, которая описывает частицу, свободно движущуюся в пространстве. Традиционное представление о частице, помимо прочего, предполагает, что она движется по определенной траектории с определенным импульсом p. Волновой функции приписывается длина волны де Бройля l = h/p, но это характеристика такой волны, которая бесконечна в пространстве, а потому не несет информации о местонахождении частицы. Волновую функцию, локализующую частицу в определенной области пространства протяженностью Dx, можно построить в виде суперпозиции (пакета) волн с соответствующим набором импульсов, и если искомый диапазон импульсов равен Dp, то довольно просто показать, что для величин Dx и Dp должно выполняться соотношение DxDp і h/4p. Этим соотношением, впервые полученным в 1927 Гейзенбергом, выражается известный принцип неопределенности: чем точнее задана одна из двух переменных x и p, тем меньше точность, с которой теория позволяет определить другую.



Соотношение Гейзенберга могло бы рассматриваться просто как недостаток теории, но, как показали Гейзенберг и Бор, оно соответствует глубокому и ранее не замечавшемуся закону природы: даже в принципе ни один эксперимент не позволит определить величины x и p реальной частицы точнее, чем это допускает соотношение Гейзенберга. Гейзенберг и Бор разошлись в интерпретации этого вывода. Гейзенберг рассматривал его как напоминание о том, что все наши знания по своему происхождению - экспериментальные и что эксперимент неизбежно вносит в исследуемую систему возмущение, а Бор рассматривал его как ограничение точности, с которой само представление о волне и частице применимо к миру атома. Гораздо более широким оказывается спектр мнений о природе самой статиcтичеcкой неопределенности. В этих неопределенностях нет ничего нового; они присущи почти каждому измерению, но обычно считают, что они обусловлены недостатками используемых приборов или методов: точное значение существует, однако найти его практически очень трудно, и потому мы рассматриваем полученные результаты как вероятные значения с присущей им статистической неопределенностью. Одна из школ физико-философской мысли, возглавлявшаяся в свое время Эйнштейном, считает, что то же самое имеет место и для микромира, и что квантовая механика с ее статистическими результатами дает лишь средние значения, которые были бы получены при многократном повторении рассматриваемого эксперимента с небольшими различиями из-за несовершенства нашего контроля. При таком воззрении точная теория каждого отдельного случая в принципе существует, просто она еще не найдена. Другая школа, исторически связанная с именем Бора, стоит на том, что индетерминизм присущ самой природе вещей и что квантовая механика - теория, наилучшим образом описывающая каждый отдельный случай, а в неопределенности физической величины находит отражение та точность, с которой эта величина может определяться и использоваться. Мнение большинства физиков склонялось в пользу Бора. В 1964 Дж. Белл, работавший тогда в ЦЕРНе (Женева), показал, что в принципе эту проблему можно решить экспериментально. Результат Белла явился, пожалуй, важнейшим с 1920-х годов сдвигом в поисках физического смысла квантовой механики. Теорема Белла, как сейчас называют этот результат, утверждает, что некоторые предсказания, сделанные на основе квантовой механики, невозможно воспроизвести путем вычислений на основе какой-либо точной, детерминированной теории с последующим усреднением результатов. Поскольку два таких метода вычислений должны давать разные результаты, появляется возможность экспериментальной проверки. Измерения, выполненные в 1970-х годах, убедительно подтвердили адекватность квантовой механики. И все же было бы преждевременно утверждать, что эксперимент подвел окончательную черту под дебатами Бора и Эйнштейна, поскольку такого рода проблемы нередко возникают как бы заново, в другом языковом обличье каждый раз, когда, казалось бы, все ответы уже найдены. Как бы то ни было, остаются и другие головоломки, напоминающие нам, что физические теории - это не только уравнения, но и словесные объяснения, связывающие кристальную сферу математики с туманными областями языка и чувственного опыта, и что это зачастую и есть самое трудное.
ЛИТЕРАТУРА
Вихман Э. Квантовая физика. М., 1977 Джеммер М. Эволюция понятий квантовой механики. М., 1985 Мигдал А.Б. Квантовая физика для больших и маленьких. М., 1989 Волкова Е.Л. и др. Квантовая механика на персональном компьютере. М., 1995

Энциклопедия Кольера. - Открытое общество . 2000 .

Формирование квантовой механики как последовательной теории с конкретными физическими основами во многом связано с работой В.Гейзенберга, в которой было сформулировано соотношение (принцип) неопределенностей . Это фундаментальное положение квантовой механики раскрывает физический смысл ее уравнений, а также определяет ее связь с классической механикой.

Принцип неопределенности постулирует:объект микромира не может находиться в состояниях, в которых координаты его центра инерции и импульс одновременно принимают вполне определенные, точные значения .

Количественно этот принцип формулируется следующим образом. Если ∆x – неопределенность значения координатыx , а∆p - неопределенность импульса, то произведение этих неопределенностей по порядку величины не может быть меньше постоянной Планка:

x p h.

Из принципа неопределенности следует, что, чем точнее определена одна из входящих в неравенство величин, тем с меньшей точностью определено значение другой. Никаким экспериментом невозможно одновременно точно измерить эти динамические переменные, причем это связано не с воздействием измерительных приборов или их несовершенством. Соотношение неопределенностей отражает объективные свойства микромира, проистекая из его корпускулярно-волнового дуализма.

То обстоятельство, что один и тот же объект проявляет себя и как частица, и как волна разрушает традиционные представления, лишает описание процессов привычной наглядности. Понятие частицы подразумевает объект, заключенный в малую область пространства, волна же распространяется в его протяженных областях. Представить себе объект, обладающий одновременно этими качествами невозможно, да и не следует пытаться. Невозможно построить наглядную для человеческого мышления модель, которая была бы адекватна микромиру. Уравнения квантовой механики, впрочем, и не ставят такой цели. Их смысл состоит в математически адекватном описании свойств объектов микромира и происходящих с ними процессов.

Если говорить о связи квантовой механики с механикой классической, то соотношение неопределенностей является квантовым ограничением применимости классической механики к объектам микромира . Строго говоря, соотношение неопределенностей распространяется на любую физическую систему, однако, поскольку волновая природа макрообъектов практически не проявляется, координаты и импульс таких объектов можно одновременно измерить с достаточно высокой точностью. Это означает, что для описания их движения вполне достаточно использовать законы классической механики. Вспомним, что аналогичным образом обстоит дело в релятивистской механике (специальной теории относительности): при скоростях движения, значительно меньших скорости света, релятивистские поправки становятся несущественными и преобразования Лоренца переходят в преобразования Галилея.

Итак, соотношение неопределенностей для координат и импульса отражает корпускулярно-волновой дуализм микромира и не связано с воздействием измерительных приборов . Несколько другой смысл имеет аналогичное соотношение неопределенностей дляэнергии Е ивремени t :

E t h.

Из него следует, что энергию системы можно измерить лишь с точностью, не превышающей h /∆ t, где t – длительность измерения.Причина такой неопределенности состоит уже в самом процессе взаимодей ствия системы (микрообъекта) с измерительным прибором . Для стационарной ситуации приведенное неравенство означает, что энергия взаимодействия между измерительным прибором и системой может быть учтена только с точностью доh /∆t . В предельном же случае мгновенного измерения происходящий обмен энергией оказывается полностью неопределенным.

Если под Е понимается неопределенность значения энергии нестационарного состояния, то тогдаt есть характерное время, в течение которого значения физических величин в системе изменяются существенным образом. Отсюда, в частности, следует важный вывод относительно возбужденных состояний атомов и других микросистем: энергия возбужденного уровня не может быть строго определена, что говорит о наличииестественной ширины этого уровня.

Объективные свойства квантовых систем отражает еще одно принципиальное положение квантовой механики – принцип дополнительности Бора , согласно которомуполучение любым экспериментальным путем информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым .

Взаимно дополнительными являются, в частности, координата частицы и ее импульс (см. выше – принцип неопределенности), кинетическая и потенциальная энергия, напряженность электрического поля и количество фотонов.

Рассмотренные фундаментальные принципы квантовой механики свидетельствуют о том, что, в силу корпускулярно-волнового дуализма изучаемого ею микромира, ей чужд детерминизм классической физики. Полный уход от наглядного моделирования процессов придает особый интерес вопросу о том, какова же физическая природа волн де Бройля. В ответе на этот вопрос принято «отталкиваться» от поведения фотонов. Известно, что при пропускании светового пучка через полупрозрачную пластину S часть света проходит сквозь нее, а часть отражается (рис. 4).

Рис. 4

Что же при этом происходит с отдельными фотонами? Эксперименты со световыми пучками очень малой интенсивности с использованием современной техники (А – детектор фотонов), позволяющей следить за поведением каждого фотона (так называемый режим счета фотонов), показывают, что о расщеплении отдельного фотона не может быть и речи (иначе свет изменял бы свою частоту). Достоверно установлено, что некоторые фотоны проходят сквозь пластину, а некоторые отражаются от нее. Это означает, чтоодинаковые частицы в одинаковых условиях могут вести себя по-разному ,т. е. поведение отдельного фотона при встрече с поверхностью пластины не может быть предсказано однозначно .

Отражение фотона от пластины или прохождение сквозь нее суть случайные события. А количественные закономерности таких событий описываются с помощью теории вероятностей. Фотон может с вероятностью w 1 пройти сквозь пластину и с вероятностьюw 2 отразиться от нее. Вероятность того, что с фотоном произойдет одно из этих двух альтернативных событий, равна сумме вероятностей:w 1 + w 2 = 1.

Аналогичные эксперименты с пучком электронов или других микрочастиц также показывают вероятностный характер поведения отдельных частиц. Таким образом, задачу квантовой механики можно сформулировать как предсказание вероятности процессов в микромире , в отличие от задачи классической механики– предсказывать достоверность событий в макромире .

Известно, однако, что вероятностное описание применяется и в классической статистической физике. Так в чем же принципиальная разница? Для ответа на этот вопрос усложним опыт по отражению света. С помощью зеркала S 2 развернем отраженный пучок, поместив детекторA , регистрирующий фотоны в зоне его пресечения с прошедшим пучком, т. е. обеспечим условия интерференционного эксперимента (рис. 5).

Рис. 5

В результате интерференции интенсивность света в зависимости от расположения зеркала и детектора будет периодически меняться по поперечному сечению области перекрытия пучков в широких пределах (в том числе обращаться в ноль). Как же ведут себя отдельные фотоны в этом опыте? Оказывается, что в этом случае два оптических пути к детектору уже не являются альтернативными (взаимоисключающими) и поэтому нельзя сказать, каким путем прошел фотон от источника к детектору. Приходится допускать, что он мог попасть в детектор одновременно двумя путями, образуя в итоге интерференционную картину. Опыт с другими микрочастицами дает аналогичный результат: последовательно проходящие частицы создают такую же картину, как и поток фотонов.

Вот это уже кардинальное отличие от классических представлений: ведь невозможно представить себе движение частицы одновременно по двум разным путям. Впрочем, такой задачи квантовая механика и не ставит. Она предсказывает результат, состоящий в том, что светлым полосам соответствует высокая вероятность появления фотона.

Волновая оптика легко объясняет результат интерференционного опыта с помощью принципа суперпозиции, в соответствии с которым световые волны складываются с учетом соотношения их фаз. Иными словами, волны вначале складываются по амплитуде с учетом разности фаз, образуется периодическое распределение амплитуды, а затем уже детектор регистрирует соответствующую интенсивность (что соответствует математической операции возведения в квадрат по модулю, т. е. происходит потеря информации о распределении фазы). При этом распределение интенсивности носит периодический характер:

I = I 1 + I 2 + 2 A 1 A 2 cos (φ 1 – φ 2 ),

где А , φ , I = | A | 2 амплитуда ,фаза иинтенсивность волн соответственно, а индексы 1, 2 указывают на их принадлежность к первой или второй из этих волн. Ясно, что приА 1 = А 2 иcos (φ 1 φ 2 ) = – 1 значение интенсивностиI = 0 , что соответствует взаимному гашению световых волн (при их суперпозиции и взаимодействии по амплитуде).

Для интерпретации волновых явлений с корпускулярной точки зрения принцип суперпозиции переносится в квантовую механику, т. е. вводится понятие амплитуды вероятности – по аналогии с оптическими волнами:Ψ = А exp ( ). При этом имеется в виду, что вероятность есть квадрат этой величины (по модулю) т. е.W = |Ψ| 2 .Амплитуда вероятности называется в квантовой механикеволновой функцией . Это понятие ввел в 1926 г. немецкий физик М. Борн, дав тем самымвероятностную интерпретацию волн де Бройля. Удовлетворение принципу суперпозиции означает, что еслиΨ 1 и Ψ 2 – амплитуды вероятности прохождения частицы первым и вторым путями, то амплитуда вероятности при прохождении обоих путей должна быть:Ψ = Ψ 1 + Ψ 2 . Тогда формально утверждение о том, что «частица прошла двумя путями», приобретает волновой смысл, а вероятностьW = |Ψ 1 + Ψ 2 | 2 проявляет свойствоинтерференционного распределения .

Таким образом, величиной, описывающей состояние физической системы в квантовой механике, является волновая функция системы в предположении о справедливости принципа суперпозиции . Относительно волновой функции и записано основное уравнение волновой механики – уравнение Шрёдингера. Поэтому одна из основных задач квантовой механики состоит в нахождении волновой функции, отвечающей данному состоянию исследуемой системы.

Существенно, что описание состояния частицы с помощью волновой функции носит вероятностный характер, поскольку квадрат модуля волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме . Этим квантовая теория фундаментально отличается от классической физики с ее детерминизмом.

В свое время именно высокой точности предсказания поведения макрообъектов была обязана своим триумфальным шествием классическая механика. Естественно, в среде ученых долгое время бытовало мнение, что прогресс физики и науки вообще будет неотъемлемо связан с возрастанием точности и достоверности такого рода предсказаний. Принцип неопределенности и вероятностный характер описания микросистем в квантовой механике коренным образом изменили эту точку зрения.

Тогда стали появляться другие крайности. Поскольку из принципа неопределенности следует невозможность одновременного определения координаты и импульса , можно сделать вывод о том, что состояние системы в начальный момент времени точно не определено и, следовательно, не могут быть предсказаны последующие состояния, т. е. нарушаетсяпринцип причинности .

Однако подобное утверждение возможно только при классическом взгляде на неклассическую реальность. В квантовой механике состояние частицы полностью определяется волновой функцией. Ее значение, заданное для определенного момента времени, определяет последующие ее значения. Поскольку причинность выступает как одно из проявлений детерминизма, целесообразно в случае квантовой механики говорить о вероятностном детерминизме, опирающемся на статистические законы, т. е. обеспечивающем тем более высокую точность, чем больше зафиксировано однотипных событий. Поэтому современная концепция детерминизма предполагает органическое сочетание, диалектическое единство необходимости ислучайности .

Развитие квантовой механики оказало, таким образом, заметное влияние на прогресс философской мысли. С гносеологической точки зрения особый интерес представляет уже упоминавшийся принцип соответствия , сформулированный Н. Бором в 1923 г., согласно которомувсякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости и переходя в нее в определенных предельных случаях .

Нетрудно убедиться, что принцип соответствия прекрасно иллюстрирует взаимоотношение классической механики и электродинамики с теорией относительности и квантовой механикой.

ПЛАН

ВВЕДЕНИЕ 2

1. ИСТОРИЯ СОЗДАНИЯ КВАНТОВОЙ МЕХАНИКИ 5

2. МЕСТО КВАНТОВОЙ МЕХАНИКИ СРЕДИ ДРУГИХ НАУК О ДВИЖЕНИИ. 14

ЗАКЛЮЧЕНИЕ 17

ЛИТЕРАТУРА 18

Введение

Квантовая механика - теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах. Законы квантовой механики (в дальнейшем К.м.) составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.

Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Квантовая механика становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

1. История создания квантовой механики

В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классической теории электромагнитного поля (классической электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (дуализм света); вторая - с невозможностью объяснить на основе классических представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счете, к открытию законов К. м.

Впервые квантовые представления (в т. ч. квантовая постоянная h ) были введены в физику в работе М. Планка (1900), посвященной теории теплового излучения.

Существовавшая к тому времени теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическое) равновесие между излучением и веществом не может быть достигнуто, т.к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классической теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определенными порциями энергии - квантами. Величина такого кванта энергии зависит от частоты света n и равна E = h n. От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в двух ее формах (1927).

Первая начинается с работы Эйнштейна (1905), в которой была дана теория фотоэффекта - явления вырывания светом электронов из вещества.

В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями - квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету - что сам свет состоит из отдельных порций - световых квантов (которые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний n волны соотношением Планка E = h n.

Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Кинематика такого столкновения определяется законами сохранения энергии и импульса, причем фотону наряду с энергией E = h n следует приписать импульс р = h / l = h n / c , где l - длина световой волны.

Энергия и импульс фотона связаны соотношением E = cp, справедливым в релятивистской механике для частицы с нулевой массой. Т. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. В этом проявляется дуализм света, его сложная корпускулярно-волновая природа.

Дуализм содержится уже в формуле E = h n , не позволяющей выбрать какую-либо одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой - частота n является характеристикой волны. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других - корпускулярную. По существу разрешение этого противоречия и привело к созданию физических основ квантовой механики.

В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от ее природы, следует поставить в соответствие волну, длина которой L связана с импульсом частицы р соотношением. По этой гипотезе не только фотоны, но и все «обыкновенные частицы» (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в явлении дифракции.

В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у других частиц, и справедливость формулы де Бройля была подтверждена экспериментально

В 1926 Э. Шрёдингер предложил уравнение, описывающее поведение таких «волн» во внешних силовых полях. Так возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерялитивистской К. м.

В 1928 П. Дирак сформулировал релятивистское уравнение, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных уравнений релятивистской квантовой механики.

Вторая линия развития начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (колебательных систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучения веществом происходят квантами энергии h n. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантована, т. е. разность соседних уровней энергии (энергий, которыми может обладать осциллятор) должна равняться h n, где n - частота колебаний атомов.

Теория Эйнштейна, уточнённая П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.

В 1913 Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны.

Рассмотрение такого движения на основе классических представлений приводило к парадоксальному результату - невозможности стабильного существования атомов: согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию. Радиус его орбиты должен уменьшится и за время порядка 10 –8 сек электрон должен упасть на ядро. Это означало, что законы классической физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определённым условиям квантования. Т. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии.

Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классической орбиты была целым кратным постоянной Планка.

Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн.

Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии E i , на другой с меньшей энергией E k , при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход:

h n = E i - E k . (1)

Так возникает линейчатый спектр - основная особенность атомных спектров, Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул.

Существование уровней энергии в атомах было непосредственно подтверждено Франка - Герца опытами (1913-14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетических уровней атома.

Н. Бор, используя квантовую постоянную h , отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля. Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах возникновение молекулярной связи.

«Полуклассическая» теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одногоуровня энергии на другой.

Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно.

Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины - матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании квантовой механики сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование квантовой механики как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано неопределённостей соотношение - важнейшее соотношение, освещающее физический смысл уравнений квантовой механики., её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты квантовой механики. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) - спин.

Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.

В течение короткого времени квантовой механика была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

А.А. БЕРЗИН, В.Г. МОРОЗОВ

ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Учебное пособие

Москва – 2004

Введение

Квантовая механика появилась сто лет назад и оформилась в стройную физическую теорию примерно к 1930 году. В настоящее время она считается фундаментом наших знаний об окружающем мире. Довольно долго применение квантовой механики к прикладным задачам ограничивалось ядерной энергетикой (по большей части военной). Однако после того, как в 1948 году был изобретен транзистор

Один из основных элементов полупроводниковой электроники, а в конце 1950-х годов был создан лазер - квантовый генератор света, стало ясно, что открытия в квантовой физике имеют огромный практический потенциал и серьезное знакомство с этой наукой необходимо не только для профессиональных физиков, но и для представителей других специальностей - химиков, инженеров и даже биологов.

Поскольку квантовая механика все больше стала приобретать черты не только фундаментальной, но и прикладной науки, возникла проблема обучения ее основам студентов нефизических специальностей. С некоторыми квантовыми идеями студент впервые знакомится в курсе общей физики, но, как правило, это знакомство ограничивается не более чем случайными фактами и их сильно упрощенными объяснениями. С другой стороны, полный курс квантовой механики, читаемый на физических факультетах университетов, явно избыточен для тех, кто хотел бы приложить свои знания не к раскрытию тайн природы, а к решению технических и других практических задач. Трудность “адаптации” курса квантовой механики к потребностям обучения студентов прикладных специальностей была замечена давно и до сих пор полностью не преодолена, несмотря на многочисленные попытки создания “переходных” курсов, ориентированных на практические применения квантовых законов. Связано это со спецификой самой квантовой механики. Вопервых, для понимания квантовой механики от студента требуется основательное знание классической физики: механики Ньютона, классической теории электромагнетизма, специальной теории относительности, оптики и т.д. Во-вторых, в квантовой механике для правильного описания явлений в микромире приходится жертвовать наглядностью. Классическая физика оперирует более или менее наглядными понятиями; их связь с экспериментом относительно проста. Иное положение в квантовой механике. Как отметил Л.Д. Ландау, внесший значительный вклад в создание квантовой механики, “необходимо понять то, что мы уже не можем себе вообразить”. Обычно трудности при изучении квантовой механики принято объяснять ее довольно абстрактным математическим аппаратом, применение которого неизбежно из-за потери наглядности понятий и законов. Действительно, чтобы научиться решать квантовомеханические задачи, надо знать дифференциальные уравнения, достаточно свободно обращаться с комплексными числами, а также уметь делать многое другое. Все это, впрочем, не выходит за рамки математической подготовки студента современного технического вуза. Настоящая трудность квантовой механики связана не только и даже не столько с математикой. Дело в том, что выводы квантовой механики, как и любой физической теории, должны предсказывать и объяснятьреальные эксперименты , поэтому нужно научиться связывать абстрактные математические конструкции с измеряемыми физическими величинами и наблюдаемыми явлениями. Вырабатывается это умение каждым человеком индивидуально, в основном, путем самостоятельного решения задач и осмысления результатов. Еще Ньютон заметил: “при изучении наук примеры часто важнее правил”. В отношении квантовой механики эти слова содержат большую долю истины.

Предлагаемое читателю пособие основано на многолетней практике чтения в МИРЭА курса “Физика 4”, посвященного основам квантовой механики, студентам всех специальностей факультетов электроники и РТС и студентам тех специальностей факультета кибернетики, где физика относится к основным учебным дисциплинам. Содержание пособия и изложение материала обусловлены рядом объективных и субъективных обстоятельств. Прежде всего необходимо было учесть, что курс “Физика 4” рассчитан на один семестр. Поэтому из всех разделов современной квантовой механики отобраны те, которые непосредственно связаны с электроникой и квантовой оптикой - наиболее перспективными областями применения квантовой механики. Однако, в отличие от курсов общей физики и прикладных технических дисциплин, мы стремились изложить эти разделы в рамках единого и достаточно современного подхода с учетом возможностей студентов для его усвоения. Объем пособия превышает содержание лекций и практических занятий, так как в курсе “Физика 4” предусмотрено выполнение студентами курсовых работ или индивидуальных заданий, которые требуют самостоятельного изучения вопросов, не включенных в план лекций. Изложение этих вопросов в учебниках по квантовой механике, ориентированных на студентов физических факультетов университетов, часто превышает уровень подготовки студента технического вуза. Таким образом, настоящее пособие может быть использовано как источник материала для курсовых работ и индивидуальных заданий.

Важной частью пособия являются упражнения. Некоторые из них приводятся непосредственно в тексте, остальные помещены в конце каждого параграфа. Многие упражнения снабжены указаниями для читателя. В связи с отмеченной выше “необычностью” понятий и методов квантовой механики выполнение упражнений следует рассматривать как совершенно необходимый элемент изучения курса.

1. Физические истоки квантовой теории

1.1. Явления, противоречащие классической физике

Начнем с краткого обзора явлений, которые не смогла объяснить классическая физика и которые привели, в конце концов, к возникновению квантовой теории.

Спектр равновесного излучения черного тела. Напомним, что в физике

черным телом (часто говорят - “абсолютно черным телом”) называется тело, которое полностью поглощает падающее на него электромагнитное излучение любой частоты.

Абсолютно черное тело является, конечно, идеализированной моделью, однако ее можно реализовать с высокой точностью с помощью простого устройства

Замкнутой полости с малым отверстием, внутренние стенки которой покрыты веществом, хорошо поглощающим электромагнитное излучение, например, сажей (см. Рис. 1.1.). Если температура стенок T поддерживается постоянной, то в конце концов установится тепловое равновесие между веществом стенок

Рис. 1.1. и электромагнитным излучением в полости. Одной из проблем, которую активно обсуждали физики в конце XIX века, была такая: как распределена энергия равновесного излучения по

Рис. 1.2.

частотам? Количественно это распределение описывается спектральной плотностью энергии излучения u ω . Произведениеu ω dω есть энергия электромагнитных волн в единице объема с частотами в интервале отω доω +dω . Спектральную плотность энергии можно измерить, анализируя спектр излучения из отверстия полости, изображенной на Рис. 1.1. Экспериментальная зависимостьu ω для двух значений температуры приведена на Рис. 1.2. С ростом температуры максимум кривой смещается в сторону высоких частот и при достаточно высокой температуре частотаω m может достигнуть области видимого глазом излучения. Тело начнет светиться, причем с дальнейшим ростом температуры цвет тела будет меняться от красного к фиолетовому.

Пока мы говорили об экспериментальных данных. Интерес к спектру излучения черного тела был вызван тем, что функция u ω может бытьточно вычислена методами классической статистической физики и электромагнитной теории Максвелла. Согласно классической статистической физике, в тепловом равновесии энергия любой системы распределяется равномерно по всем степеням свободы (теорема Больцмана). Каждая независимая степень свободы поля излучения - электромагнитная волна с определенной поляризацией и частотой. По теореме Больцмана средняя энергия такой волны в тепловом равновесии при температуреT равнаk B T , гдеk B = 1, 38· 10− 23 Дж/ K - постоянная Больцмана. Поэтому

где c - скорость света. Итак, классическое выражение для равновесной спектральной плотности излучения имеет вид

u ω=

k B T ω2

π2 c3

Эта формула есть знаменитая формула Рэлея-Джинса. В классической физике она являетсяточной и, в то же время, абсурдной. В самом деле, согласно ей, в тепловом равновесии при любой температуре имеются электромагнитные волны сколь угодно высоких частот (т. е. ультрафиолетовое излучение, рентгеновское излучение и даже смертельное для человека гамма-излучение), причем, чем выше частота излучения, тем больше энергии на него приходится. Очевидное противоречие между классической теорией равновесного излучения и экспериментом получило в физической литературе эмоциональное название -ультрафиолетовая

катастрофа . Отметим, что известный английский физик лорд Кельвин, подводя итоги развития физики в XIX веке, назвал задачу о равновесном тепловом излучении одной из главных нерешенных проблем.

Фотоэффект . Другим “слабым местом” классической физики оказался фотоэффект - выбивание электронов из вещества под действием света. Совершенно непонятным было то, что кинетическая энергия электронов не зависит от интенсивности света, которая пропорциональна квадрату амплитуды электрического поля

в световой волне и равна среднему потоку энергии, падающему на вещество. С другой стороны, энергия вылетающих электронов существенно зависит от частоты света и линейно растет с ростом частоты. Это также невозможно объяснить

в рамках классической электродинамики, поскольку поток энергии электромагнитной волны, согласно теории Максвелла, не зависит от ее частоты и полностью определяется амплитудой. Наконец, эксперимент показывал, что для каждого вещества существует так называемая красная граница фотоэффекта, т. е. минималь-

ная частота ω min , при которой начинается выбивание электронов. Еслиω < ω min , то свет с частотойω не выбьет ни одного электрона, независимо от интенсивности.

Эффект Комптона . Еще одно явление, которое не могла объяснить классическая физика, было открыто в 1923 году американским физиком А. Комптоном. Он обнаружил, что при рассеянии электромагнитного излучения (в рентгеновском диапазоне частот) на свободных электронах частота рассеянного излучения оказывается меньше, чем частота падающего излучения. Этот экспериментальный факт противоречит классической электродинамике, согласно которой частоты падающего и рассеянного излучения должны быть в точности равны. Чтобы убедиться в сказанном, не нужна сложная математика. Достаточно вспомнить классический механизм рассеяния электромагнитной волны заряженными частицами. Схема

рассуждений примерно такова. Переменное электрическое поле E (t ) =E 0 sinωt

падающей волны действует на каждый электрон силой F (t ) =−eE (t ), где−e -

(m e

заряд электрона

Электрон приобретает ускорение a (t ) =F (t )/m e

электрона), которое изменяется со временем с той же частотой ω , что и поле в падающей волне. Согласно классической электродинамике, заряд, движущийся с ускорением, излучает электромагнитные волны. Это и есть рассеянное излучение. Если ускорение изменяется со временем по гармоническому закону с частотойω , то излучаются волны с той же частотой. Появление рассеянных волн с частотами меньшими, чем частота падающего излучения, явно противоречит классической электродинамике.

Устойчивость атомов . В 1912 году произошло очень важное для всего дальнейшего развития естественных наук событие - была выяснена структура атома. Английский физик Э. Резерфорд, проводя эксперименты по рассеянию α -частиц в веществе, установил, что положительный заряд и практически вся масса атома сосредоточены в ядре с размерами порядка 10− 12 - 10− 13 см. Размеры ядра оказались ничтожно малы по сравнению с размерами самого атома (примерно 10− 8 см.). Для объяснения результатов своих экспериментов Резерфорд выдвинул гипотезу, что атом устроен аналогично солнечной системе: легкие электроны движутся по орбитам вокруг массивного ядра подобно тому, как планеты движутся вокруг Солнца. Силой, удерживающей электроны на орбитах, является сила кулоновского притяжения ядра. На первый взгляд такая “планетарная модель” кажется весьма

1 Символомe везде обозначаетсяположительный элементарный зарядe = 1, 602· 10− 19 Кл.

привлекательной: она наглядна, проста и вполне согласуется с экспериментальными результатами Резерфорда. Более того, на основе этой модели легко оценить энергию ионизации атома водорода, содержащего всего один электрон. Оценка дает неплохое согласие с экспериментальным значением энергии ионизации. К сожалению, понимаемая буквально, планетарная модель атома имеет неприятный недостаток. Дело в том, что с точки зрения классической электродинамики такой атом просто не может существовать; он нестабилен . Причина этого довольно проста: электрон движется по орбите с ускорением. Даже если величина скорости электрона не меняется, все равно есть ускорение, направленное к ядру (нормальное или “центростремительное” ускорение). Но, как уже отмечалось выше, заряд, движущийся с ускорением, должен излучать электромагнитные волны. Эти волны уносят энергию, поэтому энергия электрона убывает. Радиус его орбиты уменьшается и в конце концов электрон должен упасть на ядро. Простые вычисления, которые мы не будем приводить, показывают, что характерное “время жизни” электрона на орбите составляет примерно 10− 8 секунд. Таким образом, классическая физика не способна объяснить устойчивость атомов.

Приведенные примеры не исчерпывают всех трудностей, с которыми встретилась классическая физика на рубеже XIX и XX веков. Другие явления, где ее выводы противоречит эксперименту, мы рассмотрим позже, когда будет развит аппарат квантовой механики и мы сможем сразу же дать правильное объяснение. Постепенно накапливаясь, противоречия между теорией и экспериментальными данными привели к осознанию того, что с классической физикой “не все в порядке” и необходимы совершенно новые идеи.

1.2. Гипотеза Планка о квантовании энергии осциллятора

В декабре 2000 года исполнилось сто лет квантовой теории. Эту дату связывают с работой Макса Планка, в которой он предложил решение проблемы равновесного теплового излучения. Для простоты Планк выбрал в качестве модели вещества стенок полости (см. Рис. 1.1.) систему заряженных осцилляторов, т. е. частиц, способных совершать гармонические колебания около положения равновесия. Если ω - собственная частота колебаний осциллятора, то он способен излучать и поглощать электромагнитные волны той же частоты. Пусть стенки полости на Рис. 1.1. содержат осцилляторы со всевозможными собственными частотами. Тогда, после установления теплового равновесия, средняя энергия, приходящаяся на электромагнитную волну с частотойω , должна быть равна средней энергии осциллятораE ω с той же собственной частотой колебаний. Вспоминая рассуждения, приведенные на стр. 5, запишем равновесную спектральная плотность излучения в таком виде:

1 На латыни слово “quantum” буквально означает “порция” или “кусок”.

В свою очередь, квант энергии пропорционален частоте осциллятора:

Некоторые люди предпочитают использовать вместо циклической частоты ω так называемую линейную частотуν =ω/ 2π , которая равна числу колебаний за секунду. Тогда выражение (1.6) для кванта энергии можно записать в виде

ε = h ν.

Величина h = 2π 6, 626176· 10− 34 Дж· с также называется постоянной Планка1 .

Исходя из предположения о квантовании энергии осциллятора, Планк получил для спектральной плотности равновесного излучения следующее выражение2 :

π2 c3

e ω/kB T

− 1

В области низких частот (ω k B T ) формула Планка практически совпадает с формулой Релея-Джинса (1.3), а на высоких частотах (ω k B T ) спектральная плотность излучения, в соответствии с экспериментом, быстро стремится к нулю.

1.3. Гипотеза Эйнштейна о квантах электромагнитного поля

Хотя гипотеза Планка о квантовании энергии осциллятора “не вписывается” в классическую механику, ее можно было трактовать в том смысле, что, по-видимому, механизм взаимодействия света с веществом таков, что энергия излучения поглощается и испускается только порциями, величина которых дается формулой (1.5). В 1900 году о строении атомов практически ничего не было известно, поэтому сама по себе гипотеза Планка еще не означала полный отказ от классических законов. Более радикальную гипотезу высказал в 1905 году Альберт Эйнштейн. Анализируя закономерности фотоэффекта, он показал, что все они естественным образом объясняются, если принять, что свет определенной частотыω состоит из отдельных частиц (фотонов), обладающих энергией

1 Иногда, чтобы подчеркнуть, какая именно постоянная Планка имеется в виду, называют “перечеркнутой постоянной Планка”.

2 Теперь это выражение называется формулой Планка.

где A вых - работа выхода, т. е. энергия, необходимая для преодоления сил, удерживающих электрон в веществе1 . Зависимость энергии фотоэлектронов от частоты света, описываемая формулой (1.11), прекрасно согласовывалась с экспериментальной зависимостью, причем величина в этой формуле оказалась очень близка к значению (1.7). Отметим, что, приняв гипотезу фотонов, можно было объяснить и закономерности равновесного теплового излучения. Действительно, поглощение и излучение веществом энергии электромагнитного поля происходит квантамиω потому, что поглощаются и испускаются отдельные фотоны, имеющие именно такую энергию.

1.4. Импульс фотона

Введение представления о фотонах в какой-то степени возрождало корпускулярную теорию света. То, что фотон - “настоящая” частица, подтверждает анализ эффекта Комптона. С точки зрения фотонной теории рассеяние рентгеновских лучей можно представить как индивидуальные акты столкновений фотонов с электронами (см. Рис. 1.3.), в которых должны выполняться законы сохранения энергии и импульса.

Закон сохранения энергии в этом процессе имеет вид

соизмеримыми со скоростью света, поэтому

выражение для энергии электрона нужно

брать в релятивистском виде, т. е.

Eэл = me c2 ,

E эл=

m e 2c 4+ p 2c 2

где p - величина импульса электрона после столкновения с фотоном, аm

электрона. Закон сохранения энергии в эффекте Комптона выглядит так:

ω + me c2 = ω+

m e 2c 4+ p 2c 2

Между прочим, отсюда сразу видно, что ω < ω ; это наблюдается и в эксперименте. Чтобы записать закон сохранения импульса в эффекте Комптона, необходимо найти выражение для импульса фотона. Это можно сделать на основе следующих простых рассуждений. Фотон всегда движется со скоростью светаc , но, как известно из теории относительности, частица, движущаяся со скоростью света, должна

иметь нулевую массу. Так им образом, из общего выражения для релятивистской

энергии E =m 2 c 4 +p 2 c 2 следует, что энергия и импульс фотона связаны соотношениемE =pc . Вспоминая формулу (1.10), получаем

Теперь закон сохранения импульса в эффекте Комптона можно записать в виде

Решение системы уравнений (1.12) и (1.18), которое мы оставляем читателю (см. упражнение 1.2.), приводит к следующей формуле для изменения длины волны рассеянного излучения ∆λ =λ − λ :

называется комптоновской длиной волны частицы (массы m ), на которой происходит рассеяние излучения. Еслиm =m e = 0, 911· 10− 30 кг - масса электрона, тоλ C = 0, 0243· 10− 10 м. Результаты измерений ∆λ , проведенных Комптоном, а затем многими другими экспериментаторами, полностью согласуются с предсказаниями формулы (1.19), причем значение постоянной Планка, которая входит в выражение (1.20), совпадает со значениями, полученными из экспериментов по равновесному тепловому излучению и фотоэффекту.

После появления фотонной теории света и ее успехов в объяснении ряда явлений возникла странная ситуация. В самом деле, попробуем ответить на вопрос: что же такое свет? С одной стороны, в фотоэффекте и эффекте Комптона он ведет себя как поток частиц - фотонов, но, с другой стороны, явления интерференции и дифракции столь же упорно показывают, что свет - электромагнитныеволны . На основе “макроскопического” опыта мы знаем, что частица - это объект, имеющий конечные размеры и движущийся по определенной траектории, а волна заполняет область пространства, т. е. является непрерывным объектом. Как совместить эти две взаимно исключающие точки зрения на одну и ту же физическую реальность - электромагнитное излучение? Парадокс “волна–частица” (или, как предпочитают говорить философы, корпускулярно-волновой дуализм) для света был объяснен лишь в квантовой механике. Мы вернемся к нему после того, как познакомимся с основами этой науки.

1 Напомним, что модуль волнового вектора называется волновым числом.

Упражнения

1.1. Используя формулу Эйнштейна (1.11), объяснить существование красной границы вещества. ω min для фотоэффекта. Выразить ω min через работу выхода электрона из

1.2. Вывести выражение (1.19) для изменения длины волны излучения в эффекте Комптона.

Указание: Разделив равенство (1.14) наc и используя соотношение между волновым числом и частотой (k =ω/c ), запишем

p2 + m2 e c2 = (k − k) + me c.

После возведения в квадрат обеих частей, получим

где ϑ - угол рассеяния, показанный на Рис. 1.3. Приравняв правые части (1.21) и (1.22), приходим к равенству

me c(k − k) = kk(1 −cos ϑ) .

Остается умножить это равенство на 2π , разделить наm e ckk и перейти от волновых чисел к длинам волн (2π/k =λ ).

2. Квантование энергии атома. Волновые свойства микрочастиц

2.1. Теория атома Бора

Прежде чем перейти непосредственно к изучению квантовой механики в ее современном виде, мы кратко обсудим первую попытку применить идею Планка о квантовании к проблеме строения атома. Речь пойдет о теории атома, предложенной в 1913 году Нильсом Бором. Основная цель, которую ставил перед собой Бор, состояла в том, чтобы объяснить удивительно простую закономерность в спектре излучения атома водорода, которую сформулировал Ритц в 1908 году в виде так называемого комбинационного принципа. Согласно этому принципу, частоты всех линий в спектре водорода можно представить как разности некоторых величинT (n ) (“термов”), последовательность которых выражается через целые числа.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!