Возникновение магнетизма во вселенной. Электричества и магнетизма

Одним из основных препятствий для развития более завершенной и согласованной теории электрических феноменов явилась преувеличенная значимость, придаваемая сходству между статическим электричеством и электрическим током. Такой подход породил ошибочную веру в то, что в оба вида феноменов входит лишь одна сущность – электрический заряд. Тот же вид ошибки, только более полным и категоричным образом проявился и в нынешнем взгляде на магнетизм. Настаивая на том, что электростатические и электрические феномены – это просто два аспекта одного и того же, современное научное мнение признает, что между ними существует достаточное различие, оправдывающее отдельную категорию электростатики в теоретических аспектах статических феноменов. Если магнитостатика (соответствующая ветвь магнетизма) и упоминается во всех современных физических текстах, обычно от нее отмахиваются как от “старого подхода”, ныне вышедшего из моды. Строго статические концепции, такие как магнитные полюса, чаще всего вводятся с извинениями.

Дробление отдельных физических сфер изучения на все больше и больше подразделений являлось характерной чертой научной деятельности на протяжении всей ее истории. В ситуации с магнитостатикой у нас имеется обратный процесс, случай, когда основное подразделение физики умерло благодаря каннибализму. Магнитостатику проглотил связанный с ней, но совсем другой феномен – электромагнетизм . Между этими двумя видами магнитных явлений есть много сходства, как и между двумя видами электричества. По существу, величины, в терминах которых выражается магнитостатика, определяются в основном электромагнитными отношениями. Но это ни в коей мере не оправдывает нынешнюю веру в то, что в процесс вовлечена лишь одна сущность. Подчиненный статус, который традиционная физика часто приписывает магнитным явлениям, иллюстрируется следующим комментарием К. У. Форда:

“Как считают физики-теоретики, магнетизм в нашем мире – это просто побочный продукт электричества; он существует лишь как результат движения электрически заряженных частиц”.

Такое утверждение подразумевает, что сделанные допущения установлены разумно и прочно . Однако на самом деле допущение, что магнетизм существует лишь как результат движения заряженных частиц, основывается на целиком и полностью незначимых допущениях. Истинная ситуация точнее описывается следующей цитатой из физического учебника:

“Лишь за прошедшие тридцать лет были созданы модели, объединяющие два источника магнетизма (магниты и магнитостатику). Даже сегодня модели далеки от совершенства, но, по крайней мере, они убедили людей, что имеется лишь один источник магнитных полей: все магнитные поля возникают за счет движущихся электрических зарядов”.

По существу, этот отрывок свидетельствует о том, что практически идея разработана не так уж и хорошо, но, тем не менее, большинство голосует за нее. Видный американский астроном Дж. Н. Бакелл указывал на то, что “часто мы создаем серьезные научные проблемы шумным одобрением, а не наблюдением” . Некритичное принятие “далеких от совершенства” моделей магнетизма – достойный пример такой ненаучной практики.

Странной характеристикой существующей ситуации является то, что, придя к выводу, что магнетизм – это просто побочный продукт электричества, одним из видов деятельности физиков является поиск магнитного аналога подвижного электрического заряда – электрона. И вновь, цитируя К. У. Форда:

“Электрическая частица создает электрическое поле. Когда оно движется, оно создает магнитное поле как вторичный эффект. В целях симметрии должны быть магнитные частицы, создающие магнитные поля, движение которых создает электрические поля так же, как движущиеся электрические частицы создают магнитные поля”.

Автор признает, что “и до сих пор магнитный монополь смущает всех исследователей. Экспериментаторы потерпели поражение в обнаружении любого признака частицы”. Этот блуждающий огонек продолжает преследоваться с рвением, вызывающим такие ехидные комментарии, как:

“Удивительно, что отсутствие экспериментального свидетельства существования магнитных монополей не уменьшает рвения искателей”.

Точка зрения Форда такова: “Очевидное отсутствие существования монопольных частиц приводит современных физиков к парадоксу, они не могут все бросить до тех пор, пока не найдут объяснения” . Но он же (ненамеренно) предлагает ответ на парадокс, которым завершает обсуждение ситуации с монополем:

“Физиков волнует вызов симметрии и всех известных законов – магнитная частица до сих пор не создана и не обнаружена”.

Всякий раз, когда наблюдаемые факты “бросают вызов известным законам” и нынешнему пониманию связи отношений симметрии с любой данной ситуацией, можно с уверенностью говорить, что нынешнее понимание симметрии и, по крайней мере, некоторых “известных законов” неверное. В данном случае любой критический подход быстро укажет не только на то, что ряд допущений, на основе которых делается вывод о существовании магнитных монополей, выведен из чистых допущений без фактической поддержки, но и на то, что между двумя ключевыми допущениями имеется определенное противоречие.

Как объяснял Форд, магнитный монополь, который так усердно ищут физики, - это частица, “создающая магнитные поля; то есть магнитный заряд”. Если бы такая частица существовала, она бы, конечно, оказывала магнитные влияния благодаря заряду. Но это напрямую противоречит допущению, что магнетизм является “побочным продуктом электричества”. Физики не могут сидеть одновременно на двух стульях. Если магнетизм – это побочный продукт электричества (то есть, электрических зарядов), тогда не может быть магнитного заряда (источника магнитных эффектов), аналогичного электрическому заряду - источнику электрических эффектов . С другой стороны, если бы частица с магнитным зарядом (магнитный монополь) существовала, тогда базовая теория магнетизма, приписывающая все магнитные эффекты электричеству, неверна .

Из положений теоретического развития вселенной движения очевидно, что упущенная информация – это понимание физической природы магнетизма. До тех пор, пока магнетизм считается побочным продуктом электричества, а электричество рассматривается как данная характеристика природы, не поддающаяся объяснению, ничто не направит теорию в надлежащие русла . Но как только осознается, что магнитостатические явления возникают за счет магнитных зарядов, и что такой заряд является видом движения (вибрацией вращения), ситуация проясняется почти автоматически. Конечно, магнитные заряды существуют. Точно так же, как имеются электрические заряды, являющиеся одномерными вибрациями вращения, действующими противоположно одномерным вращениям, существуют и магнитные заряды – двумерные вибрации вращения, действующие противоположно двумерным вращениям . Феномены, возникающие за счет зарядов такой природы, относятся к магнитостатике. Электромагнетизм – это еще один двумерный феномен, включающий движение непрерывной, а не вибрационной природы.

Двухмерность – вот ключ к пониманию магнитных отношений . Отсутствие осознания базовой характеристики магнетизма – одна из основных причин, создающих путаницу, существующую во многих сферах магнитной теории. Два измерения магнитного заряда и электромагнетизма являются, конечно, скалярными измерениями . Движение компонентов во втором измерении не возможно представить напрямую в традиционной пространственной системе отсчета, но они обладают наблюдаемыми косвенными влияниями, особенно на действующие величины. Значительный вклад в путаницу вносит и отсутствие осознания вибрационной природы электростатических и магнитостатических движений, которая резко отличает их от непрерывных движений, вовлеченных в электрический ток и электромагнетизм. Магнитостатика похожа на электромагнетизм тем, что определяющим фактором является ряд действующих измерений. Она похожа на электростатику тем, что определяющим фактором является вибрационный характер движения.

Наши открытия показывают, что отсутствие магнитных монополей – это не “вызов симметрии”. Симметрия существует, но для ее осознания требуется лучшее понимание природы электричества и магнетизма. В электрических и магнитных отношениях есть симметрия, и в некоторых смыслах именно такой вид симметрии предвидели Форд и его коллеги. Один вид магнитного поля действительно создается так же, как электрическое поле, как и полагает Форд в объяснении рассуждения, лежащего в основе гипотезы магнитного монополя. Но электрическое поле создает не “электрическая частица”; это определенный вид движения – вибрация вращения. Магнитное поле создается подобной вибрацией вращения. Магнитное поле создает электрический ток, поступательное движение частицы (незаряженного электрона) в проводнике. Поступательное движение магнитного поля аналогично создает электрический ток в проводнике. И вновь, симметрия существует, но не тот вид симметрии, который призывался бы для магнитного монополя.

Уравнение магнитной силы, выражение для силы между двумя магнитными зарядами, идентично уравнению Кулона, за исключением коэффициента t/s, введенного в магнитный заряд вторым скалярным измерением движения. Традиционная форма уравнения F = MM’/d². Как и в других первичных уравнениях силы, термины M’ и d² не обладают размерностями. На основе общих принципов, применяемых к уравнениям силы, что определялось во вселенной движения, упущенный термин в магнитном уравнении аналогичен 1/s в уравнении Кулона, - это 1/t. Тогда пространственно-временные размерности магнитного уравнения - F = t²/s² x 1/t = t/s².

Подобно движению, составляющему электрический заряд, и по тем же причинам, движение, составляющее магнитный заряд, обладает скалярным направлением наружу. Но поскольку в материальном секторе магнитное вращение обязательно положительное (смещение во времени), все устойчивые магнитные заряды в данном секторе обладают смещением в пространстве (отрицательным), и отсутствует независимое магнитное явление, соответствующее отрицательному* электрическому заряду . В данном случае нет установленного использования, препятствующего применению обозначений, согласующихся с терминологией вращения. Поэтому мы будем относить магнитный заряд к отрицательным зарядам, а не пользоваться положительным* обозначением, как в случае электрического заряда.

Хотя в материальном окружении отсутствуют положительные магнитные заряды, кроме как под влиянием внешних сил в ситуации, которая будет обсуждаться позже, двумерный характер магнитного заряда вносит влияние ориентации, не присутствующее в электрических феноменах. Все одномерные (электрические) заряды похожи; они не обладают отличительными характеристиками, по которым их можно было бы подразделить на разные виды классов. Но двумерный (магнитный) заряд состоит из вибрации вращения в измерении системы отсчета и еще одного скалярного измерения, независимого от первого, и, следовательно, перпендикулярного к нему в геометрическом представлении. Вращение, с которым связана вторая вибрация вращения, делит атом на две половины, которые могут определяться отдельно. На одной стороне от разделительной линии наблюдаемое вращение происходит по часовой стрелке. Скалярное направление магнитного заряда на этой стороне – направление наружу от вращения по часовой стрелке. Подобный заряд на противоположной стороне – это движение наружу от вращения против часовой стрелки.

Единица магнитного заряда относится лишь к одной из двух вращающихся систем. Следовательно, атом обретает два заряда, занимающих положения, описанные в предыдущем параграфе, и направленных противоположно. Поэтому каждый атом магнитной или намагниченной субстанции обладает двумя полюсами или центрами магнитного влияния. На Земле имеются аналоги магнитных полюсов, соответственно они называются северным полюсом и южным полюсом.

Полюса представляют собой точки скалярного отсчета. Действующее направление вибрации вращения, составляющее заряд, находящийся на северном полюсе, - это движение наружу от северной точки отсчета; действующее направление заряда, центрированного в южном полюсе, - это движение наружу от южной точки отсчета. Следовательно, взаимодействие двух магнитно заряженных атомов следует тому же паттерну, что и взаимодействие электрических зарядов. Как показано на рисунке 22, два северных полюса (линия а) движутся наружу от северных точек отсчета и, следовательно, наружу друг от друга. Два южных полюса (линия с) тоже движутся наружу друг от друга. Но, как показано на линии b, северный полюс, движущийся наружу от северной точки отсчета, движется по направлению к южному полюсу, который движется наружу от южной точки отсчета. Таким образом, одноименные полюса отталкиваются, а разноименные притягиваются.

На этом основании, когда два магнитно заряженных атома сближаются друг с другом, северный полюс одного атома притягивается к южному полюсу другого атома. Результирующая структура – линейная комбинация северного полюса, нейтральная комбинация обоих полюсов и южный полюс. Прибавление третьего магнитно заряженного атома превращает южный полюс в нейтральную комбинацию, но оставляет новый южный полюс на новом конце структуры. Могут происходить и дальнейшие прибавления такого рода, ограниченные лишь температурными и другими разрушительными силами. Подобную стрелу атомов с северным и южным полюсами на противоположных концах можно создавать введением атомов намагниченной материи между магнитно заряженными атомами двухатомной комбинации. Разделение подобной структуры в любой точке ломает нейтральную комбинацию и оставляет северный и южный полюса на концах каждого сегмента. Следовательно, на сколько частей не делился бы намагниченный материал, в каждом фрагменте материала всегда имеются северный и южный полюса .

Благодаря направленному характеру магнитных сил они подвергаются экранированию так же, как электрические силы. С другой стороны, гравитационная сила не может экранироваться или модифицироваться никоим образом. Многие наблюдатели сочли это указанием на то, что гравитационная сила должна обладать абсолютно другой природой. Такое впечатление усугубляется трудностью обнаружения подходящего места гравитации в основной физической теории. Основная цель теоретиков, работающих над проблемой построения “общей теории” или “единой теории” физики – найти место гравитации в своей теоретической структуре.

Сейчас развитие теории вселенной движения показывает, что гравитация, статическое электричество и магнитостатика – явления одного и того же рода. Они отличаются друг от друга лишь числом действующих скалярных измерений . Благодаря симметрии пространства и времени в этой вселенной каждый вид силы (движения) обладает противоположно направленным партнером. Гравитация не исключение, она имеет место, как во времени, так и в пространстве . Следовательно, она подвергается тому же дифференцированию между положительным и отрицательным, что и дифференциация, которую мы обнаруживаем в электрических силах. Но в материальном секторе вселенной итоговое гравитационное влияние всегда происходит в пространстве, то есть, отсутствует действующая отрицательная гравитация . В космическом секторе оно всегда происходит во времени. Поскольку гравитация трехмерна, не может быть любой пространственной дифференциации вида, который мы обнаруживаем в магнетизме.

В результате отсутствия понимания истинной связи между электромагнитными и гравитационными феноменами, традиционная физическая наука не способна сформулировать теорию, относящуюся к обеим сферам. Ее подход к проблеме – допускать, что электричество фундаментально, и воздвигать структуру физической теории на этом основании. Чтобы привести наблюдения и измерения в соответствие с теорией, основанной на электричестве, требуются дальнейшие допущения. Таким образом, гравитации присвоили статус необъяснимой аномалии. Так случилось из-за способа построения теорий, а не из-за какой-либо особенности гравитации . Если бы подход изменился, физическая теория строилась бы на основании допущения, что гравитация фундаментальна, а “не усвоенными” пунктами оказались бы электричество и магнетизм. Единую теорию, которую пытаются построить исследователи, можно создать лишь посредством развития, такого как представленного в данной работе. Оно покоится на прочном фундаменте понимания, где каждому из трех базовых феноменов отводится свое надлежащее место.

Помимо влияний разницы в числе скалярных измерений, свойства вибрации вращения, составляющей магнитный заряд, совпадают со свойствами вибрации вращения, составляющей электрический заряд. Отсюда в надлежащих материалах можно индуцировать магнитные заряды. Материалы, в которых индуцируются магнитные заряды, ведут себя как постоянные магниты . По существу, некоторые материалы становятся постоянными магнитами, когда в них индуцируются магнитные заряды. Однако лишь относительно небольшое число элементов способно намагничиваться в значительной степени; то есть, обладать свойством, известным как ферромагнетизм .

Традиционные теории магнетизма не имеют объяснения ограничению намагничивания элементов. Конечно, эти теории подразумевали бы, что оно должно быть общим свойством материи. На основании ранее упомянутых допущений электроны, которые традиционная теория рассматривает как составляющие атомов, являются миниатюрными электромагнитами и создают магнитные поля. В большинстве случаев допускается, что магнитные поля атомов ориентированы случайно и отсутствует итоговая магнитная результирующая. “Однако имеется несколько элементов, в атомах которых поля, созданные разными электронами, взаимно уничтожаются не полностью. Такие атомы обладают итоговым магнитным полем. У некоторых материалов… магнитные поля атомов выстраиваются в линию друг с другом” . Допускается, что такие материалы обладают магнитными свойствами. А вот почему эти несколько элементов должны обретать свойство, которым не обладает большинство элементов, не уточняется .

В целях объяснения в терминах вселенной движения нам потребуется рассмотреть природу атомного движения. Если к трехмерной комбинации движений, составляющих атом, прибавляется двумерная, положительная вибрация вращения, это меняет величины движений. Результат – не один и тот же атом с магнитным зарядом, а атом другого вида . Как отдельная сущность магнитный заряд может существовать лишь в атоме, составленном так, что имеется часть атомной структуры, способная вибрировать двумерно и независимо от основного тела атома. Если нас волнует магнитное вращение, требование удовлетворяется тогда, когда вращение асимметрично; то есть, в одном из двух магнитных измерений имеется n единиц смещения, а в другом – n + 1.

На этом основании симметричные элементы, обладающие магнитными вращениями 1-1, 2-2, 3-3 и 4-4, исключаются. Хотя магнитный заряд не обладает третьим измерением, электрическое вращение, с которым он связан в трехмерном движении атома, не должно зависеть от вращения, связанного с оставшейся частью атома. Следовательно, электрическое смещение вращения должно превышать 7, так чтобы одна полная единица (7 единиц смещения плюс уровень первичной единицы) могла оставаться с основным телом магнитного вращения, в то время как избыток относится к магнитному вращению. Более того, электрическое смещение должно быть положительным, поскольку система отсчета не может вмещать два разных отрицательных смещения (движение во времени) в одной и той же атомной структуре. Следовательно, полностью исключаются электроотрицательные смещения. Влияние всех исключений ограничивает магнитные заряды до небольшого числа элементов.

Первым элементом, способным принимать магнитный заряд в обычном состоянии, является железо . Такое положение №1 особенно благоприятно для намагничивания, поэтому железо до сих пор остается самым магнитным из элементов. Два следующих элемента, кобальт и никель , тоже магнитные, поскольку их электрическое смещение обычно положительное. В особых условиях смещения хрома (6) и магния (7) увеличиваются соответственно до 8 и 9 с помощью переориентации относительно новой нулевой точки, что объяснялось в томе 1 книги Д. Ларсона. Тогда эти элементы тоже способны принимать магнитные заряды.

Согласно предыдущему объяснению атомных характеристик, требующихся для приема магнитного заряда, другими магнитными элементами являются лишь члены Деления II Группы 4А. Теоретическое ожидание совпадает с наблюдением, но имеются пока необъяснимые различия между магнитным поведением этих элементов и элементов Группы 3А. В Группе 4А магнитная сила меньше. Лишь один из элементов этой группы, гадолиний, магнитен при комнатной температуре, и он не занимает того же положения в группе, что и железо - самый магнитный элемент Группы 3А. Однако самарий, находящийся в положении железа, не играет важной роли во многих магнитных сплавах. Гадолиний находится на два положения выше в атомных сериях, что может указывать на то, что он подвергается модификации, подобной модификации, присущей низшим элементам Группы 3А, но противоположно направленной.

Если на основании поведения в некоторых сплавах мы приписываем некоторые магнитные свойства ванадию, все элементы Деления II Групп 3А и 4А обладают степенью намагничиваться при надлежащих условиях. Большее число магнитных элементов в Группе 4А – это отражение большего размера 32-х элементов группы, который помещает эти элементы в деление II. В связи с магнитными свойствами редкоземельных элементов Группы 4А имеется ряд еще необъяснимых особенностей в положениях элементов в атомных сериях. Возможно, они связаны с другими еще необъяснимыми отклонениями в поведении этих элементов, которые были замечены при обсуждениях других физических свойств. Магнитные способности элементов деления II и сплавов переносятся в некоторые соединения. Но такие простые соединения как бинарные хлориды, окиси и так далее – не магнитные; то есть, не способны принимать магнитные заряды ферромагнитного типа.

ЭЛЕКТРОМАГНЕТИЗМ

Термины “электрический” и “магнитный” введены в работах Д. Ларсона с пониманием того, что они используются как синонимы для соответственно “скалярно одномерного” и “скалярно двумерного”, а не ограничивались относительно узким значением, которое они имеют в повседневной практике. Здесь они используются в тех же смыслах, хотя расширенный объем определений не так очевиден, потому что сейчас мы в основном имеем дело с феноменами, которые обычно называются “электрическими” или “магнитными”. Мы определили одномерное движение незаряженных электронов как электрический ток, одномерную вибрацию вращения – как электрический заряд, двумерную вибрацию вращения – как магнитный заряд . Конкретнее, магнитный заряд – это двумерное вращательно распределенное скалярное движение вибрационного характера .

Сейчас мы готовы исследовать движения, не являющиеся зарядами, но обладающие некоторыми первичными характеристиками магнитного заряда, то есть они являются двумерными направленными распределенными скалярными движениями.

Давайте рассмотрим короткий отрезок проводника, по которому будем пропускать электрический ток. Материя, из которой состоит проводник, подвергается действию гравитации - трехмерно распределенному скалярному движению вовнутрь. Как мы видели, ток – это движение пространства (электронов) в материи проводника, эквивалентное скалярному движению материи в пространстве наружу. Таким образом, одномерное движение тока противодействует части скалярного движения гравитации вовнутрь, действующей в скалярном измерении пространственной системы отсчета.

В этом примере давайте предположим, что два противоположных движения в отрезке проводника равны по величине. Тогда итоговое скалярное измерение равно нулю. От начального трехмерного гравитационного движения остается вращательно распределенное скалярное движение в двух других скалярных измерениях . Поскольку оставшееся движение скалярное и двумерное, оно магнитное и известно как электромагнетизм . Обычно гравитационное движение в измерении тока лишь частично нейтрализуется потоком тока, но это не меняет природы результата, а просто уменьшает величину магнитного влияния.

Из вышеприведенного объяснения видно, что электромагнетизм – это остаток гравитационного движения, который остается после того, как все или часть движения в одном из трех гравитационных измерений нейтрализуется противоположно направленным движением электрического тока . Следовательно, двумерное скалярное движение перпендикулярно потоку тока . Поскольку гравитационное движение в двух измерениях не подвергается влиянию движения электрического тока наружу, оно обладает скалярным направлением вовнутрь.

Во всех случаях магнитный эффект проявляется намного больше, чем гравитационный, который убирается, если рассматривается в контексте нашей гравитационно связанной системы отсчета. Это не означает, что ток создает нечто. Происходит следующее. Определенные движения преобразуются в другие виды движений, более сконцентрированных в системе отсчета. И чтобы удовлетворить требованиям новой ситуации, привносится энергия извне. Как указывалось, разница, которую мы наблюдаем между величинами движений с разными числами действующих измерений, - это искусственный результат нашего расположения в гравитационно связанной системе, расположения, сильно увеличивающего размер . С точки зрения естественной системы отсчета, системы, к которой реально приспосабливается вселенная, основные единицы не зависят от измерений; то есть 1³ = 1² = 1. Но благодаря нашему асимметричному расположению во вселенной, естественная единица скорости, s/t, принимает бо льшую величину, 3x10 10 см/сек. Она становится коэффициентом измерения, который входит в каждое соотношение между величинами разных измерений .

Например, термин c² (квадрат 3x10 10) в уравнении Эйнштейна для отношения между массой и энергией отражает коэффициент, относящийся к двум скалярным измерениям, отделяющим массу (t³/s³) от энергии (t/s). Аналогично, разница в одно измерение между двумерным магнитным влиянием и трехмерным гравитационным влиянием делает магнитное влияние в 3x10 10 раза больше (если выражено в системе сгс). Магнитное влияние меньше, чем одномерное электрическое влияние на тот же самый коэффициент. Из этого следует, что магнитная единица заряда или электромагнитная единица, определенная магнитным эквивалентом закона Кулона, в 3x10 10 раз больше, чем электрическая единица или электростатическая единица. Электрическая единица 4,80287x10 -10 электростатических единиц эквивалентна 1,60206x10 -20 электромагнитных единиц.

Относительные скалярные направления сил между элементами тока противоположны направлениям сил, создаваемых электрическими и магнитными зарядами, как показано на рисунке 23, который следует сравнить с рисунком 22. Электромагнитные движения вовнутрь направлены к нулевым точкам, из которых движения зарядов направлены наружу. Два проводника, несущие ток в том же направлении, AB или A’B, аналогично одноименным зарядам, движутся друг к другу, как показано линией (а) на схеме, а не отталкиваются друг от друга, как это делают одноименные заряды. Два проводника, несущие ток в направлении BA или B’A, как показано на линии (с), тоже движутся друг к другу. Но проводники, несущие ток в противоположных направлениях, AB’ и BA’, аналогично разноименным зарядам, отталкиваются друг от друга, как указано на линии (b).

Такие различия в возникновении и скалярном направлении между двумя видами магнетизма проявляются и другими способами. В нашем исследовании данных тем будет удобнее рассматривать отношения силы с другой точки зрения. До сих пор наше обсуждение вращательно распределенных скалярных движений – гравитационного, электрического и магнитного – проходило в терминах сил, оказываемых отдельными объектами, по существу, точечными источниками рассматриваемых влияний. Сейчас, в электромагнетизме, мы имеем дело с протяженными источниками. На самом деле они являются протяженными совокупностями дискретных источников, поскольку все физические феномены существуют в форме дискретных единиц. Следовательно, было бы возможно работать с электромагнитными влияниями так же, как с влияниями, возникающими за счет легче определяемых точечных источников, но такой подход к протяженным источникам сложен и труден. Значительное упрощение достигается введением концепции поля.

Такой подход применим и к более простым гравитационным и электрическим феноменам. Конечно, сейчас это модный способ иметь дело со всеми (видимыми) взаимодействиями, хотя к дискретным источникам лучше подходит альтернативный подход. Исследуя базовую природу полей, мы можем рассмотреть ситуацию с гравитацией, которая во многих отношениях является самым простым из феноменов. Как мы знаем, масса А обладает движением АБ по направлению к массе Б, находящейся поблизости. Это движение неотъемлемо неотличимо от движения БА атома Б. В той степени, в какой реальному движению массы А препятствует инерция, движение объекта А появляется в системе отсчета как движение объекта Б, составляющее прибавление к реальному движению этого объекта.

Величина гравитационного движения массы А, приписанного массе Б, определяется как произведение масс А и Б, деленное на расстояние между двумя массами, поскольку является движением массы Б, если скалярное движение АБ рассматривается как движение обоих объектов. Из этого следует, что каждому пространственному положению вблизи от объекта А можно присвоить величину и направление, указывая способ, каким масса размером в единицу двигалась бы под влиянием гравитационной силы объекта А, если бы занимала это расположение. Соединение расположений и соответствующих векторов сил составляет гравитационное поле объекта А . Аналогично, распределение движения электрических или магнитных зарядов определяет электрическое или магнитное поле в пространстве, окружающем заряд.

Математическое выражение объяснения поля массы или заряда идентично тому, которое появляется в ныне принятой физической теории, но его концептуальная основа совсем другая . Традиционная точка зрения такова. Поле – это “нечто физически реальное в пространстве” вокруг возбуждающего объекта, а сила физически передается от одного объекта другому этим “нечто”. Однако после критического анализа ситуации П. У Бриджмен пришел к выводу об отсутствии свидетельства, оправдывающего допущение, что это “нечто” реально существует. Мы находим, что поле – это не “нечто физическое” . Это просто математическое следствие неспособности традиционной системы отсчета представлять истинный характер скалярного движения. Но осознание истинного статуса как математического приема не лишает его полезности. Полевой подход остается самым простым и наиболее удобным способом математически иметь дело с магнетизмом.

Поле магнитного заряда определяется в терминах силы, действующей на пробный магнит. Поле магнитного полюса, например, одного конца длинного стержневого магнита, радиально. Как можно видеть из описания возникновения магнетизма в предыдущих параграфах, поле провода, несущего электрический ток, тоже было бы радиальным (в двух измерениях), если бы определялось в терминах силы, действующей на элемент тока в параллельном проводнике. Привычно определять магнитное поле на основе электростатики: то есть, силой, действующей на магнит или электромагнит в форме катушки, соленоид, который создает радиальное поле так же, как стержневой магнит посредством геометрической компоновки. Если поле несущего ток провода определяется именно так, оно окружает провод, а не растягивается радиально. Тогда сила, действующая на пробный магнит перпендикулярна полю и направлению потока тока.

Это прямой вызов физической теории, очевидное нарушение повсеместно применяемых физических принципов. Физика никогда не встречалась с таким вызовом. Физики не способны даже выдвинуть правдоподобную гипотезу. Поэтому они просто отмечают аномалию, “странную” характеристику магнитного эффекта. “Магнитная сила обладает странно направленным характером, - говорит Ричард Фейнман. - В каждом примере, сила всегда пребывает под прямыми углами к вектору скорости” . Однако перпендикулярная связь между направлением движения тока и направлением силы не казалась бы странной, если бы взаимодействовали магниты с магнитами и токи с токами . В этом случае магнитное влияние тока на ток все еще пребывало бы “под прямыми углами к вектору скорости”, но в направлении поля, а не перпендикулярно к нему, поскольку поле определялось бы в терминах действия тока на ток . В случае взаимодействия тока с магнитом результирующая сила перпендикулярна магнитному полю, то есть, вектору напряженности поля . Пробный магнит в электромагнитном поле не движется в направлении поля, как можно было бы ожидать, а в перпендикулярном направлении.

“Заметьте, какое странное направление силы. Оно не совпадает ни с полем, ни с направлением тока. Вместо этого сила перпендикулярна и току и линиям поля”.

Использование слова “странный” в данном утверждении – это неявное признание, что причина перпендикулярного направления не понята в контексте современной физической теории. И вновь, развитие вселенной движения предлагает упущенную информацию. Ключ к пониманию ситуации – осознание разницы между скалярным направлением движения (силой) магнитного заряда наружу и электромагнитным движением вовнутрь .

Очевидно, что движение электрического тока происходит в одном из скалярных измерений, отличного от измерения, представленного в пространственной системе отсчета, поскольку направление потока тока обычно не совпадает с направлением движения проводника. Следовательно, магнитный остаток состоит из движения в другом ненаблюдаемом измерении и в измерении системы отсчета. Если магнитное влияние одного тока взаимодействует с магнитным влиянием другого, измерение движения тока А, параллельного измерению системы отсчета, совпадает с соответствующим измерением тока Б. Результат – единая сила, сила взаимного притяжения или отталкивания, уменьшающая или увеличивающая расстояние между А и Б. Но если взаимодействие происходит между током А и магнитом В, измерения, параллельные системе отсчета, не могут совпадать, поскольку движение (и соответствующая сила) тока А происходит в скалярном направлении вовнутрь, а движение магнита В происходит в скалярном направлении наружу.

Можно поинтересоваться, почему движения вовнутрь и наружу не могут сочетаться на положительном или отрицательном основании с итоговой результирующей, равной разности. Причина в том, что движение вовнутрь проводника А к магниту В является одновременно движением В к А, поскольку скалярное движение – это обоюдный процесс . Движение магнита наружу похоже на движение В от А и движение А от В. Из этого следует, что два отдельных движения обоих объектов, одно вовнутрь, другое наружу, не являются комбинацией движения вовнутрь одного объекта и движением наружу другого объекта. Из этого следует, что два движения должны происходить в разных скалярных измерениях . Поэтому сила, действующая на элемент тока в магнитном поле (силовой аспект движения в измерении системы отсчета), перпендикулярна полю .

Эти отношения показаны на рисунке 24. Слева находится один конец стержневого магнита. Магнит создает магнитостатическое (МС) поле, существующее в двух скалярных измерениях. Одно измерение любого скалярного движения должно быть ориентировано так, чтобы совпадать с измерением системы отсчета. Мы будем называть наблюдаемое измерение МС движения - А, пользуясь большой буквой, чтобы продемонстрировать наблюдаемый статус, и представляя МС поле жирной линией. Ненаблюдаемое измерение движение обозначается буквой b и представляется тонкой линией.

Сейчас мы вводим электрический ток в третье скалярное измерение. Как указывалось выше, его ориентация совпадает с измерением системы отсчета и обозначается буквой С. Ток создает электромагнитное (ЭМ) поле в измерениях а и b, перпендикулярных С. Поскольку МС движение обладает скалярным направлением наружу, в то время как ЭМ движение направлено вовнутрь, скалярные измерения движений, совпадающие с измерением системы отсчета, не могут быть одними и теми же. Поэтому измерениями ЭМ движения являются В и а; то есть, наблюдаемый результат взаимодействия между двумя видами магнитного движения находится в измерении В, перпендикулярном к МС полю и току С.

Длинное тело солнечной системы

Как это представляется человеку, Солнечная Система состоит из огромной излучающей сферы, вокруг которой, через гармонично возрастающие интервалы, подобно кругам от брошенного в воду камня лежат орбиты, по которым вращаются другие меньшие и неизлучающие сферы. Как камень для этих кругов на воде, эта центральная излучающая сфера, или солнце, является, по-видимому, источником энергии, которой создаются все явления. С диаметром примерно в одну десятитысячную от всей его системы, оно находится почти в точно таком же отношении к своему огромному полю влияния, как человеческая яйцеклетка к тому телу, которое из нее вырастает. И так как в обоих случаях меньший дает рост большему, то степень концентрации или напряжености энергии должна быть такой же.

Концентрические орбиты зависимых сфер, или планет, гармонично соотносятся друг с другом в соответствии с законом, названным по имени его автора законом Бодэ. Взяв геометрическую прогрессию 0, 3, 6, 12, 24, 48, 96, 102 и прибавив к каждой цифре 4, мы получим ряд, который более или менее представляет относительные расстояния планетных орбит от Солнца.

Сами планеты различаются по размеру - сперва возрастая в размерах от самой маленькой, Меркурия, который ближе всего к центру, до самой большой - Юпитера, находящегося на полпути между центром и внешней границей, а затем снова уменьшаясь до самой крайней из известных планет (Плутону), которая немного больше Меркурия.

Чем удаленнее планета, тем медленнее ее видимая скорость, уменьшаясь с 30 миль в секунду у Меркурия до 3 1/3 миль в секунду у Нептуна. Это обычная характерная черта ослабления импульсов, посланных из центрального источника, по мере их погружения на все большую глубину. Очень хорошую модель этого процесса дает нам фейерверк, "огненное колесо", когда оно, быстро вращаясь, рассыпает вокруг себя потоки искр, и кажется, что они закругляются назад, в обратную сторону от направления вращения - то есть искры теряют орбитальную скорость тем больше, чем дальше отбрасываются.

Кроме того, стоит заметить, что орбитальная скорость планет обратно пропорциональна квадратному корню их расстояния от Солнца. Поскольку сила света уменьшается обратно пропорционально квадрату расстояния, мы можем добавить далее, что орбитальная скорость планет пропорциональна квадрату квадрата силы падающего на них солнечного света. Как и у клеток, у людей и, видимо, у всех живых творений, скорость планет зависит от влияния, которое на них оказывается.

Конечно, в "огненном колесе" искры первоначально вылетают из центра. Многие теории сходятся на том, что таким же способом однажды были рождены планеты или оторваны от самого тела Солнца, - возможно, дети напряжения, созданного проходившей недалеко другой звезды. За всю ту бесконечно малую вспышку солнечного времени, охватывающую весь известный период изучения неба человеком, ни единого признака движения планет вовне замечено не было. Но это едва ли удивительно. Потому что если бы первоначальное рождение планет произошло, как это предполагается, несколько тысяч миллионов лет назад, то такое движение наружу составляло бы не более чем милю или две за одно столетие.


Мы можем сказать только, что все строение Солнечной Системы - так же, как строение спиральной туманности - предполагает такое расширение из центра. Это подразумевает не только удаление планет, но также и рост и расширение самого Солнца. Потому что только еще более горячее и более огромное солнце, чем наше, то есть солнце, материя которого доведена до намного большего накала и разреженности, могло бы поддерживать и давать жизнь своим спутникаи на таком огромном расстоянии. В таком гигианте как Антарес, в миллионы раз более разреженном, чем наше Солнце, и чей лучистый диаметр мог бы покрыть всю орбиту Земли, мы видим пример такой старшей и более развитой системы. Центральная жизнь и тепло больше не ограничены там какой-то отдельной астрономической точкой, но уже выросли до такой степени, что охватывает большую часть своего владения. В этом состоит разница между человеческим сознанием, привязанным к какому-то одному органу, и сознанием, охватывающим все тело и проникающим во все функции человека. Это последнее мы отличаем как более развитое состояние.

Если наружное движение Солнечной Системы недоступно восприятию человека из-за его временной шкалы, то ее круговое движение вполне заметно и может быть вычислено. Ось системы, то есть само Солнце, обращается вокруг самого себя немногим меньше чем за месяц. К тому моменту, когда импульс этого кругового движения достигает Меркурия, скорость его падает до трех месяцев, а когда достигает Венеры - до восьми месяцев, Земли - до двенадцати месяцев; и так далее в уменьшающейся пропорции, вплоть до орбиты Нептуна, где для совершения полного оборота ему требуется уже не меньше 164 лет. Третий закон Кеплера является формальным выражением этого ослабевания.

Что мы на самом деле стараемся описать таким запутанным способом - это просто отношение между пространством и временем. Мы пытаемся описать изменения, происходящие в сечении, которое постепенно продвигается по третьему измерению или длине высшего тела, то есть Солнечной Системы. Точно так же и клетка в потоке крови, видящая только сечение человеческого тела, старалась бы анализировать видимые движения поперечных сечений артерий и нервов, различные скорости которых зависели бы от угла, под которым они проходили бы через ее плоскость.

Как мы сказали вначале, все такие описания относятся к такой Солнечной Системе, "как она представляется человеку". В каком же виде можно представить себе не только сечение, но все тело Солнечной Системы?

Итак, единство и модель человеческого тела существует в измерении высшем, чем измерение настоящего клетки, где то, что она считает прошлым и будущим сосуществует как одно человеческое существо. Таким же образом, единство Солнечной Системы, замысел и модель ее тела должны существовать в следующем измерении за пределами настоящей вселенной человека. Наша задача, таким образом, состоит в том, чтобы постараться отчетливо представить себе прошлое и будущее Солнечной Системы как сосуществующие и составляющие одно тело. Мы должны представить себе Солнечную Систему так, как она видит себя сама, так же, как чтобы понять единство и модель человека, клетка должна стараться представить себе человека так, как видел бы себя он сам или другой человек.

Мы вычислили, что момент восприятия Солнца длится 80 лет. Когда мы рассматривали его нашим обычным взглядом из поперечного сечения, мы представляли себе круги, расходящиеся по поверхности пруда от брошенного камня. Теперь мы должны представить себе этот камень, погружающийся на всю глубину пруда, и соответственно волны, расходящиеся от него по всей толще воды. Или лучше, мы должны представить себе наше "огненное колесо" не только вертящимся, но движущимся вперед, достаточно быстро для того, чтобы можно было увидеть сразу весь его огненный шлейф.

Во-первых, каковы будут размеры этого вихря огня, который стал теперь нашей моделью?

Астрономы, вычисляя разницу между наибольшей скоростью, с которой созвездия прямо над эклиптикой кажутся приближающимися к нам и наибольшей скоростью, с которой созвездия прямо под нами видимо отступают от нас, считают, что вся Солнечная Система движется по направлению к Веге со скоростью около 12 1/2 миль в секунду. Таким образом, за 80 лет Солнце, волоча за собой все излучение своей системы, продвигается на 30 000 миллионов миль вперед в пространство. Диаметр орбиты Нептуна составляет около 6 000 миллионов миль. Таким образом, сфера излучения, огненный шлейф, или "тело" Солнечной Системы за 80 лет - это фигура, длина которой в пять раз больше ее ширины, то есть имеет пропорции близкие фигуре человека в полный рост. Таков силуэт тела нашего Солнца.

Давайте вспомним, что "момент восприятия" смотрящего на Солнечную Систему равного ей существа составляет 80 лет. Это существо увидит необычайно сложную и красивую фигуру. Пути планет, вытянутые в форме бесчисленных спиралей различных напряжений и диаметров, стали теперь рядом переливающихся оболочек, прикрывающих длинную, раскаленную добела нить солнца. Каждая из них мерцает своим особым блеском и цветом, и все вместе со всех сторон окутано легкой газовой тканью, сотканной из эксцентрических путей бесчисленных астероидов и комет, все пышет живой теплотой и звучит невероятно тонкой и гармоничной музыкой.

Этот образ ни в одной своей детали не фантастичен. Ширина планетных орбит будет определять размер каждой оболочки; диаметр планеты - грубость или тонкость нити, из которой она соткана; относительная кривизна поверхности планеты - ее угол преломления или цвет; количество и удаленность ее спутников - различную текстуру, как, например, у шелка, шерсти или хлопка; плотность и вид атмосферы - ее сияние или свечение; тогда как скорости вращения планет создадут тот эффект, что вся совокупность оболочек будет испускать магнетическое или живое излучение.


Никакая аналогия с тканями не может, конечно, передать все то множество проявлений и впечатлений, которые можно старательно вычислять одно за другим, но которые на самом деле существуют одновременно. Мы знаем по опыту, полученному на нашем уровне, что когда вместе производится такое множество впечатлений, это значит, что перед нами явление, не поддающееся никаким усилиям точного анализа, то есть явление жизни. И тот, кто доходит достаточно далеко в этом использовании точной аналогии, не может избежать вывода, что 1там0, в мире, где "момент восприятия" составляет 80 лет, Солнечная Система является, каким-то непостижимым для нас образом, живым телом.

Наблюдая невероятное повышение важности и значительности даже таких простейших и скучнейших явлений, как размер и кривизна, при переводе их на ту шкалу времени, мы оказываемся совершенно не в состоянии вообразить возможный внешний вид того четырехмерного Солнца, когда даже наше трехмерное ослепляет нас своим сиянием. И мы можем только предположить, что оно будет каким-то образом представлять сокровенную жизненную силу Солнечного Существа, невидимую для наблюдателя даже на той же шкале, так же как сознание одного человека невидимо для другого.

Мы говорили о других системах, например, о системе Антареса, в которой центральное солнечное излучение уже охватывает намного больший объем, чем делает это наше Солнце. И мы говорили о неизбежном выводе, следующем из идеи о расширяющейся Солнечной Системе, о том, что и наше Солнце также должно все более делаться горячим, ярким, лучистым.

На самом деле, возможно, эта разница в степени излучения центрального Солнца составляет главное отличие между миллионами составляющих Млечный Путь солнечных систем. Все такие системы, чтобы быть способными к развитию, должны включать в себя полный набор элементов и планет, так же как люди, чтобы быть способными к развитию, должны иметь полный набор органов и функций. Единственный фактор, который остается переменным и поддающимся совершенствованию, это в одном случае, сила и проникающая способность ее центрального света, а в другом - сила и проникающая способность центрального сознания.

Все люди похожи друг на друга в своем образе и строении: и так же, скорее всего, все солнца. Что отличает друг от друга людей в уровне их сознания - то же отличает и солнца в степени их излучения.

В самом деле, чем больше мы изучаем этот вопрос, тем яснее видно, что свет и сознание подчиняются одним и тем же законам, и усиливаются или ослабевают одним и тем же образом. Мы можем даже сказать, что они являются одним и тем же явлением, видимым на разных шкалах.

Это, в самом деле, единственный переменный фактор во вселенной, единственный фактор, который может измениться в результате индивидуальной работы, усилия и понимания каждого отдельного космоса. В своем устройстве ни человек, ни солнце не могут ничего изменить, не могут ничего сделать, поскольку каждое из этих существ - такое, как оно есть - наделено моделью вселенной, гарантирующей, что каждое из них в самом начале получает все необходимое для саморазвития. Но это саморазвитие, то есть постепенное освещение и озарение своего космоса само-выработанным светом или сознанием, целиком зависит лишь от самого этого отдельного существа. Здесь оно должно все делать.

Более того, целое может только тогда стать более сознательным, если становится более сознательной часть, а часть только тогда может стать более сознательной, если становится более сознательным целое. Если я вдруг начинаю сознавать свою ступню, то моя ступня также начинает сознавать себя, и начинает отмечать все виды новых ощущений и движений, которых ни она, ни я до этого не сознавали. Если одна клетка моего тела возбуждается до того, что начинает сознавать себя от некого ужасного бедствия на ее собственной шкале, то я тоже начинаю сознавать боль. Точно так же, усиление излучения солнца должно быть связано с усилением впитывания и трансформации света планетами - то есть, постепенным приобретением ими собственного излучения.

Чтобы человеку быть полностью сознательным, должны стать полностью сознательными все его части. Чтобы Солнцу стать полностью излучающим, должны стать излучающими все его планеты. Чтобы Абсолюту помнить себя, должны помнить себя все существа.

Тем, кто спрашивает, в чем назначение вселенной, мы можем поэтому ответить, что задача вселенной и каждого существа в ней, от солнца до клетки, в том, чтобы стать более сознательными.


Солнечная система как трансформатор

Образ, описанный нами как сеть переплетенных оболочек, без сомнения будет предлагать аналогии каждому специалисту в соответствии с областью его знания. Физиологу, например, он может напомнить взимопроникновение различных систем в человеческом теле - мышечной, артериальной, лимфатической, нервной и так далее, каждая из которых построена из волокон или каналов различных размеров и является носителем отличной от других энергии.

Одной из наиболее полезных для нашей цели аналогий будет та, которая может прийти в голову электротехнику. Удалив из нашего образа его чувственные проявления и сведя его просто к геометрической проекции спиралей на бумаге, он мог бы узнать в ней схему многофазного трансформатора. Вселенная летающих шаров механика оставила как след во времени вселенную электротехника - в виде витков спирали, задуманную, как он догадался бы, ни для чего иного, как для передачи и преобразования солнечной энергии.

Для неспециалистов давайте вспомним, что электричество имеет две единицы измерения - сила тока (амперы) и напряжение (вольты), и что трансформатор - это устройство для изменения отношения между этими двумя факторами. Если выразить самым общим образом, то чем тяжелее машина, которую нужно привести в движение, тем большая для этого необходима сила тока. Чтобы удовлетворить таким различным требованиям от одного единственного источника силы, трансформатор увеличивает силу тока посредством уменьшения напряжения, и наоборот. Это достигается прохождением тока через обмотку с определенным количеством витков и индуктированием обратного потока в какую-то другую соседнюю обмотку с большим или меньшим количеством витков. Если число витков во вторичной обмотке больше, чем в первичной, то сила тока уменьшается, а напряжение растет, если же меньше, то достигается противоположный результат.

На практике сила тока ограничена составом и толщиной провода. Поэтому если бы требовалось сделать ток пригодным для осветительных проводов, он должен был бы быть трансформирован в высокое напряжение и низкую силу тока.

Теперь, рассматривая в свете этих идей нашу схему следов главных тел Солнечной Системы, мы ясно различаем толстую прямую первичную обмотку Солнца, окруженную восемью вторичными спиралями его планет. Мы также видим, что толщина этих планетных "проводов" варьируется от одной десятой (Юпитер) до одной сотой (Меркурий) толщины первичной солнечной обмотки. А в 80-летней схеме мы может насчитать в различных спиралях все виды обмоток от полутора до не меньше трехсот оборотов. В самом деле здесь мы имеем все факторы и компоненты громадного трансформатора, получающего ток одного определенного напряжения и преобразующего его в восемь различных напряжений. Модель совершенна вплоть до изоляции проводов тонкой непроводящей пленкой планетных атмосфер.

Трансформатор, построенный в человеческом мире по инструкции этой космической схемы, будет выдавать ток восьми различных напряжений и восьми различных сил тока. А по количеству оборотов планетных спиралей за восемьдесят лет, взятых нами как стандарт, мы могли бы даже рассчитать их относительную мощность. Предположим, например, что ток, производимый из первоначального Солнечного электричества обмоткой Нептуна, имеет напряжение 1 вольт и силу тока 10 000 ампер. Тогда мощность Юпитера будет 14 вольт и 770 ампер, Земли - около 170 вольт и 60 ампер, Меркурия - 700 вольт и 15 ампер, и так далее. -117 0

17. Смотрите Таблицы Планет - Приложение IV, a и b.

Увеличение силы тока в мире какой-либо планеты мы могли бы наблюдать как усиление вибрации, то есть более быстрое вращение этой планеты вокруг своей оси.

Если бы обмотки такого трансформатора были изготовлены из материалов, имеющих одинаковую проводимость, то поперечное сечение проволоки, необходимой для каждой из обмоток, было бы пропорционально силе проводимого ею тока. На деле же поперечные сечения планет больше или меньше этой требуемой величины в пределах _ 10 раз. Но давайте предположим, что планетные обмотки имеют неодинаковую проводимость. Предположим, что внутренние жилы этих проводов - как это почти всегда и бывает - сделаны из различных металлов, каждый из которых имеет различную проводимость. И далее предположим, что те, у которых сечение меньше, чем мы ожидали, как, например, Нептун, изготовлены из металлов с высокой проводимостью, а те, у которых сечение больше, как, например, Юпитер, - из металлов с низкой проводимостью. Затем, с учетом общепринятого приписывания металлов планетам - серебра Нептуну, золота Урану, сурьмы Сатурну, висмута Юпитеру, меди Марсу, железа Земле, стронция Венере и латуни Меркурию - можно исправить нашу явную ошибку, и вся огромная машина на самом деле окажется точной по всем показателям. Если только предположить, что планетные обмотки различаются по своей проводимости так же, как металлы, то они, кажется, действительно сконструированы специально для того, чтобы описанным способом играть роль трансформаторов солнечной энергии. 17.

Это можно оспорить, допустив, что металлы выбраны произвольно, для того чтобы получить именно такой результат. К сожалению, поскольку планеты сами не имеют излучений, современная наука исследовать их состав не имеет возможности. И мы можем только попутно заметить, что современные теории на самом деле предполагают, что основная масса Земли, или барисфера, является сжатым железом. Кроме того, мы имеем традиционное приписывание металлов планетам в астрологии, но оно менялось в разные периоды и, поскольку делалось на основе знакомства лишь с несколькими металлами, не очень полезно. Поэтому на данный момент мы должны поместить эти вычисления в область предположительных выводов.

Что намного важнее с нашей точки зрения, это тот принцип, что электрический ток, проходящий вдоль какого-либо провода, создает вокруг этого провода магнитное поле. Это магнитное поле состоит из концентрических линий силы, движущихся вокруг провода по часовой стрелке, если смотреть со стороны, в направлении которой этот ток движется. Другими словами, по мере продвижения тока магнитное поле вращается так же, как вращается штопор по мере вкручивания его в пробку.

Если мы теперь постараемся перевести это из мира спиралей, видимого во времени Солнца, в мир вертящихся шаров, видимый во времени человека, то мы поймем, как происходит то, что 1все0 вращающиеся тела во вселенной создают магнитное поле и окружены им. Само их вращение, как мы только что видели, - показатель того, что они являются сечениями линий, через которые некий огромный ток проходит в какое-то другое измерение. Мы также поймем, что скорость движения планеты по орбите представляет собой, совершенно явно, скорость течения этого огромного тока. Потому что, как мы видели ранее, эта орбитальная скорость является прямым следствием силы достигающего ее солнечного света - то есть она стимулируется, или индуцируется, центральной энергией солнца.

Все планеты, таким образом, окружены собственными магнитными полями. Сечение провода, вокруг которого вращается поле магнитной силы, будет представлено экватором планеты, тогда как северный полюс планеты будет представлять направление движения планеты во времени, то есть направление того огромного тока, который ее наполняет. Таким образом, притяжение северного полюса планеты можно считать притяжением будущего, то есть притяжением в том направлении, в котором планета со всеми ее обитателями движется; тогда как отталкивающий эффект южного полюса представляет отвержение прошлого, отвержение направления, откуда планета со всеми ее обитателями пришла. Для всех существ будущее - это положительный полюс времени, прошлое - отрицательный. Они не могут делать ничего другого, кроме как притягиваться к одному и отталкиваться от другого.

Эти магнитные поля планет перекрывают друг друга и взаимодействуют, и совместно производимая постоянная лишь немного изменяется в поле каждой из них. На практике наиболее детально было изучено лишь магнитное поле Земли, вместе с влияниями на него магнитных полей Солнца и Луны. Известно, например, что магнитное влияние Солнца на Землю примерно в 12 раз сильнее, чем на Луну - поле около 60 000 ампер по сравнению с 5000. -18.

18. Sydney Chapman, "The EarthЇs Magnetism", стр.76. Магнитные влияния планет еще не измерены каждое по отдельности, ни даже просто различены одно от другого, хотя существование такого влияния стало научным фактом в связи с влиянием различных планетных конфигураций на прием коротких радио-волн. (Конфигурация (астр.)- видимое положение относительно Солнца - прим. перев.).

Если говорить о Солнце, то его магнитное влияние кажется меньше,- для нашего восприятия, - чем намного более сильное влияние тех вибраций, которые ощущаются нами как свет и тепло, и гораздо более характерных для солнца. Тем не менее это магнитное влияние совершенно отлично от света, поскольку измерение задержки между магнитными волнениями, видимыми на поверхности Солнца, и магнитными бурями, ощущаемыми как их результат на поверхности Земли, показывает, что это влияние перемещается с совершенно другой скоростью. Если свет Солнца достигает нас за семь минут, то магнитным влияниям из этого же источника для того чтобы их можно было ощутить на Земле требуется от одного до двух дней. Если свет движется со скоростью 186 000 миль в секунду, то магнитные волны перемещаются лишь со скоростью около 400 миль в секунду, или примерно в 500 раз медленнее.

Каковы следствия этого магнитного влияния? Может быть, наиболее очевидное и красивое явление, напрямую им вызванное - это aurora borealis, или Северное Сияние. И это как раз интересно, потому что в северном сиянии мы видим чистый свет - сам по себе невидимый, - впервые наделенный формой. Эта форма постоянно меняется, перемещается, преобразуется, создавая в северном небе величественный занавес или мерцающие сферы или пульсирующие поля излучения. Северное сияние почти совершенно невещественно и является результатом магнетизма, непосредственно действующего на свободные ионы водорода. В нем мы ясно видим воздействие магнитного поля как формы, и изменения в этом поле как изменения в форме. То же явление происходит, когда мы кладем магнит под листок бумаги, покрытый железными опилками, и он придает до этого аморфной массе видимую форму своего поля. Это на самом деле общий принцип - магнитное влияние, действующее на материю, это то, что создает видимую форму.

Мы сказали, что в случае с Солнцем, хотя его магнитное влияние огромно, оно кажется меньше из-за намного большей скорости влияния света, который с нашей точки зрения является гораздо более важной характеристикой Солнца. Но Луна и планеты не излучают своего собственного света, поэтому в их случае магнитное влияние является их наиболее характерной эманацией. Совместное магнитное влияние Луны и планет должно, поэтому, создавать на Земле форму; так же как магнитное влияние Земли должно в свою очередь помогать создавать форму на всех других планетах.

Из всего этого возникает много интересных идей о роли магнетизма. При изучении различных известных нам видов энергии, мы видим, что каждая энергия имеет определенное поле действия, зависящее от ее источника и скорости. Свет, движущийся со скоростью 186 000 миль в секунду, производится Солнцем, и для всех практических целей ограничен полем Галактики. Звук, движущийся в воздухе со скоростью 1/5 мили в секунду, производится явлениями Природы и ограничен полем Земли. В то же время, между светом и звуком лежит третья форма энергии - магнитная, которая, перемещаясь со скоростью 400 миль в секунду, может быть рассмотрена как происходящая из планет и ограниченная полем Солнечной Системы.

Свет, магнетизм и звук составляют очевидную иерархию энергий, характеризующих соответственно солнце, планеты и природу. И они представляют средства, которыми эти космоса действуют на нас, посредством которых первый из них дает нам жизнь, второй наделяет нас формой, а третий - ощущением.

Таким образом, картина вселенной, которая постепенно вырастает перед взором электротехника - это картина обмоток внутри обмоток, каждая из которых трансформирует энергию из высшего источника для своих собственных нужд и электроемкости. Огромная обмотка Солнца должна трансформировать свою раскаленную добела энергию из еще более первичного источника тока в глубине Млечного Пути. По индукции, Млечный Путь должен производить ток в Солнце, Солнце - в планетах, Земля - в кружащейся вокруг нее Луне, а мудрец - в ученике, который преданно вокруг него вращается.

То, вокруг чего вращаются другие создания, дает свет и жизнь. То, что вращается, в свою очередь наделено магнетизмом и формой. Этим магнетизмом оно одновременно и участвует в наделении формой других, и, в свою очередь, само наделяется формой ими. Весь магнетизм действует на весь другой магнетизм. Все формы создают все другие формы. От первого космоса до последнего электрона, вся вселенная - это набор обмоток внутри обмоток, спиралей внутри спиралей, магнитных полей внутри магнитных полей. В этом аспекте каждое существо преобразует один и тот же ток в определенное напряжение, требующееся для приведения в движение галактики, человека или пылинки. А когда с окончанием срока жизни его сопротивление снижается, то не выдерживая собственного напряжения, оно плавится, форма его магнитного поля распадается, и оно умирает.


Взаимодействие солнца и планет

Здесь, наверное, необходимо сделать некоторые смягчающие замечания, относящиеся в целом к принципу аналогии, которым мы так свободно пользовались. Из всех вышеприведенных доказательств не следует делать вывод, что Солнечная Система является трансформатором электрического тока, и что планеты действительно сделаны из сурьмы, висмута, железа и так далее - хотя эти элементы могут на самом деле играть большую роль в их составе. То, что предполагается - это что законы, которые на одной шкале позволяют построить трансформатор, это те же самые законы, которые на другой шкале создают Солнечную Систему. Планеты могут не трансформировать именно ту электрическую энергию, какую мы знаем, на высокое напряжение и низкую силу тока, но они на самом деле трансформируют подобным образом некую неизвестную энергию.

Точно так же, хотя планеты необязательно состоят из указанных металлов, они, скорее всего, сделаны из веществ, которые неким образом стоят в том же отношении друг у другу, как эти металлы - так же как ноты A B C D E F G (Ля,Си,До,Ре,Ми,Фа, Соль) остаются в одном и том же отношении друг к другу в любой - верхней или нижней - октаве. Законы универсальны; механизмы, по которым они работают, подобны друг другу на многих шкалах - но осуществление этих законов, составные части и продукты работы этих механизмов будут различаться в соответствии с элементами, существующими на рассматриваемом уровне. Так, пружина, например, - это один и тот же механизм, подчиняющийся одному и тому же закону, применяется ли он для того, чтобы двигать стрелки наручных часов или выпускать стрелы из лука. Но он сделан из разных материалов и используется для разных целей.

Также нужно понять, что каждая аналогия, даже самая точная и ясная, всегда остается неполной. Она объясняет только одну сторону явления, и может обойти вниманием другую сторону, которая так же или еще более важна. В частности, несмотря на уместность аналогий, выведенных из механического действия законов магнетизма или физики, мы никогда не должны забывать о том, что Солнечная Система в каждой своей части обнаруживает признаки 1жизни0 и разумности. Мы имеем дело не с обмотками или кругами на воде, но - у нас есть все основания полагать - с живыми существами, возможности и природа которых для нас непостижимы, хотя мы можем понять, что они существуют и представить себе их возможный внешний вид.

Помня об этом, мы можем пытаться прийти к какому-то ясному пониманию таких высших существ с помощью многих различных аналогий, каждая из которых будет что-то добавлять к нашему пониманию. Поэтому, держа в памяти образ трансформатора и все то, что он показал нам о природе и функциях планет в отношении к Солнцу, мы не должны, однако, на этом останавливаться.

Например, мы можем также увидеть планетные оболочки вокруг длинного тела Солнечной системы как призматические линзы, каждая из которых имеет свой коэффициент преломления, позволяющий ей отражать своим особым цветом белый свет Солнца. Такой коэффициент преломления зависел бы от скорости вращения данной планеты вокруг своей оси, точно так же, как частота вибрации электронов определяет цвета, воспринимаемые человеческим глазом. Между скоростью вращения планет (один или два раза в день) и электронной частотой, производящей цвет (10 15 колебаний в секунду) лежит 63 октавы. Если мы теперь вернемся к нашей таблице времен космосов, мы найдем, что точно такое же количество октав лежит между временем электрона и временем типичной планеты - Земли. То есть вибрация электронов, производящая свет, на планетной шкале точно параллельна движению, которое мы измеряем как вращение вокруг своей оси.

Если затем мы предположим, что каждая планета - это цветной отражатель в небе, заливающий все окружающее своим особым оттенком, мы на самом деле лишь представляем себе, как Солнечная Система должна выглядеть для космоса, который настолько же больше планет, насколько человек больше электрона. Мы можем ясно представить себе это впечатление, глядя на театральную сцену, где огни рампы могут светить на актеров белым светом, в то время как пятна цветных лучей из-за кулис окрашивают их тени с одной стороны красным, с другой зеленым или фиолетовым. Таким же будет относительне впечатление от Солнца и планет.

И если предположить, что эти актеры находятся на поверхности Земли или в любой другой части Солнечной Системы, тогда этот белый и цветные огни будут постоянно менять свое положение друг относительно друг, и впечатление от этого в каждое мгновение будет разным. Белый свет Солнца может литься из-за левой кулисы, в то время как огни рампы могут светить то красным, то зеленым, и, соединяясь, наполнять сцену мягким желтоватым свечением. Перестановки будут бесконечными, и производимые ими эффекты будут постоянно переходить один в другой по мере вращения самих огней вокруг сцены.

Более того, как все мы помним из детских посещений пантомимы (рождественское представление для детей в Англии - прим. перев.), каждое изменение будет определять свое особое эмоциональное настроение, та же декорация и те же герои будут казаться в красном свете ужасными и кровавыми, в зеленом - жуткими и таинственными, в голубом - духовными и возвышенными, а в желтом - теплыми, благожелательными и прозаическими. Конечно, сами по себе разноцветные огни не имеют эмоций - в действительности они работают по совершенно другим законам. Тем не менее действие, которое они оказывают на человеческие существа, - эмоциональное, и их влияние воспринимается нами именно в этом плане. Так же и с планетами.

Нужно подчеркнуть, однако, что планеты - это лишь отражатели, лишь трансформаторы. Они не излучают собственного света, но лишь придают свету Солнца определенное "настроение", то есть цвет. Они не вырабатывают собственного тока, но лишь приспосабливают ток, приходящий из Солнца, для той или иной цели.

Можно еще лучше понять роль планет, рассматривая их как функции Солнечной Системы. Так же как пищеварение, дыхание, произвольные движения, разум и так далее являются функциями космоса человека, так и Меркурий, Венера, Марс, Юпитер и остальные могут быть функциями космоса Солнечной Системы. В совокупности они наделяют Солнце всеми функциями, и делают его полным космическим существом, обладающим всеми возможностями.

Все разнообразные значения этого становятся более понятными в свете очень важного принципа, управляющего отношением между космосами. Каждый космос содержит шесть пар ключевых органов - как бы батарей, через которые он получает влияния и энергию от высших космосов. Принцип, о котором идет речь, гласит, что 1функции0 нижнего космоса происходят из органов высшего космоса.

В человеке, например, эти органы или батареи представлены эндокринными железами, и секрециями этих желез, которые, проникая в клетку, создают ее функции. Обращаясь к высшим космосам, мы находим, с другой стороны, что все дыхательные функции всех людей, животных, птиц, рыб, растений - вместе составляют один орган Природы; все двигательные функции всех передвигающихся существ вместе составляют другой орган Природы, и так далее.

И наконец, рассматривая Меркурий, Венеру, Землю, Марс, Юпитер и Сатурн как функции Солнечной Системы, и помня о миллионах солнц и систем, из которых состоит Млечный Путь, мы должны мыслить все возможные Меркурии вместе как составляющие один орган для нашей галактики, все возможные Земли вместе как другой галактический орган, и так же все остальные.

Именно таким образом анатомия и физиология каждого космоса связана с анатомией и физиологией всех других. Реальные физические органы большего космоса определяют саму природу функций, которыми пользуется низший космос.

Итак, если единственным источником всей энергии и жизни для Солнечной Системы и всего в ней является 1Солнце0, то формой, цветом, проявлением и функцией все это наделяются планетами. Эти силы взаимодействуют, сливаются и разделяются в бесконечно различных комбинациях по всему полю солнечного влияния. Один фактор, однако, остается все еще неучтенным в сотворении всех этих многообразных и сложных явлений известной нам природы - это материя, или Земля.

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Книга американского ученого, перевод первого издания которой был опубликован в 1972 г., написана фактически заново и отражает все важнейшие достижения физики магнетизма за последние 12 лет. Используется единый подход, основанный на рассмотрении обобщенной восприимчивости.
    Рассчитана на научных работников, а также аспирантов и студентов, занимающихся проблемами магнетизма и физики твердого тела.

    МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ.
    Всякую систему можно характеризовать ее откликом на внешнее воздействие. Например, пресловутый «черный ящик» в электронике характеризуется напряжением на выходе, когда на его входе задан ток. Величина, называемая передаточным импедансом, содержит всю информацию, необходимую для понимания работы черного ящика. Если известно, что именно заключено в черном ящике (например, если мы знаем детальную схему включения сопротивлений, диодов и т. д.), то можно теоретически установить, каким будет передаточный импеданс.

    Точно так же если рассматривать кристалл как систему зарядов и токов, то его можно характеризовать функцией отклика. Нас здесь будет интересовать в основном отклик такой системы на магнитное поле. В этом случае «выходом» служит намагниченность, а функцией отклика - магнитная восприимчивость. Точно вычислить магнитную восприимчивость фактически невозможно, поскольку система содержит примерно 1023 частиц. Поэтому обычно исходят из анализа измерений магнитной восприимчивости, по поведению которой устанавливают важнейшие процессы, протекающие в системе, а затем уже анализируют систему с учетом таких процессов. Для реализации такой программы мы должны знать, какие процессы в системе возможны и как они влияют на восприимчивость.

    ОГЛАВЛЕНИЕ
    От редакторов перевода
    Предисловие ко второму изданию
    ГЛАВА 1. МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ
    1.1. Магнитный момент
    1.2. Намагниченность
    1.3. Обобщенная восприимчивость
    1.3.1. Соотношения Крамерса - Кронига
    1.3.2. Флуктуационно-диссипационная теорема
    1.3.3. Соотношение Онсагера
    1.4. Вторичное квантование
    ГЛАВА 2. МАГНИТНЫЙ ГАМИЛЬТОНИАН
    2.1. Уравнение Дирака
    2.2. Источники поля
    2.2.1. Однородное внешнее поле
    2.2.2. Электрическое квадрупольное поле
    2.2.3. Магнитное дипольное (сверхтонкое) поле
    2.2.4. Другие электроны того же самого иона
    2.2.5. Кристаллическое электрическое поле
    2.2.6. Диполь-дипольное взаимодействие
    2.2.7. Прямой обмен
    2.2.8. Суперобмен
    2.3. Спиновый гамильтониан
    2.3.1. Ионы переходных металлов
    2.3.2. Редкоземельные ионы
    2.3.3. Полупроводники
    ГЛАВА 3. СТАТИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ НЕВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
    3.1. Локализованные моменты
    3.1.1. Диамагнетизм
    3.1.2. Парамагнетизм ионов переходных металлов
    3.1.3. Парамагнетизм редкоземельных ионов
    3.2. Металлы
    3.2.1. Диамагнетизм Ландау
    3.2.2. Эффект де Гааза - Ван Альфена
    3.2.3. Квантовый эффект Холла
    3.2.4. Парамагнетизм Паули
    3.3. Измерение восприимчивости
    ГЛАВА 4. СТАТИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
    4.1. Локализованные моменты
    4.1.1. Высокие температуры
    4.1.2. Низкие температуры
    4.1.3. Температуры вблизи Тс
    4.1.4. Топология дальнего порядка
    4.2. Металлы
    4.2.1. Теория ферми-жидкости
    4.2.2. Модель Стонера
    4.2.3. Модель Хаббарда
    ГЛАВА 5. ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ СЛАБО ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
    5.1. Локализованные моменты
    5.1.1. Уравнения Блоха
    5.1.2. Форма резонансной линии
    5.1.3. Измерение Т1
    5.1.4. Вычисление Т1
    5.2. Металлы
    5.2.1. Парамагноны
    5.2.2. Теория ферми-жидкости
    5.3. Эффект Фарадея
    ГЛАВА 6. ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ СИЛЬНО ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
    6.1. Нарушенная симметрия
    6.2. Диэлектрики
    6.2.1. Теория спиновых волн
    6.2.2. Магнитостатические моды
    6.2.3. Солитоны
    6.2.4. Тепловые магнонные эффекты
    6.2.5. Параметрические возбуждения
    6.2.6. Оптические процессы
    6.2.7. Высокие температуры
    6.3. Металлы
    ГЛАВА 7. МАГНИТНЫЕ ПРИМЕСИ
    7.1. Локальные колебания
    7.2. Локальные моменты в металлах
    7.2.1. Теория образования момента Андерсона
    7.3. Эффект Кондо
    7.4. Случайный обмен
    7.4.1. РККИ-взаимодействие
    7.4.2. Спиновые стекла
    7.4.3. Миктомагнетизм
    ГЛАВА 8. РАССЕЯНИЕ НЕЙТРОНОВ
    8.1. Сечение рассеяния нейтронов
    8.2. Ядерное рассеяние
    8.2.1. Брэгговское рассеяние
    8.2.2. Рассеяние на фононах
    8.3. Магнитное рассеяние
    8.3.1. Брэгговское рассеяние
    8.3.2. Диффузное рассеяние
    Литература
    Предметный указатель.

    Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
    Скачать книгу Квантовая теория магнетизма, Уайт Р., 1985 - fileskachat.com, быстрое и бесплатное скачивание.

    Следующее большое открытие произошло почти случайно. Ханс Кристиан Эрстед (1777-1851), профессор физики Копенгагенского университета, готовился к лекции об электричестве и магнетизме; для этого он принес в аудиторию батарею, чтобы продемонстрировать действие электрического тока. Рядом с батареей он положил компас — для демонстрации магнитных сил. Прежде он уже заме-чал, что между электричеством и магнетизмом существует некоторая связь: например, стрелка компаса беснуется во время грозы.

    До начала лекции оставалось немного времени, и профессор решил провести небольшой опыт. Эрстед положил компас рядом с проводом, по которому тек электрический ток, и его подозрения подтвердились: под действием тока стрелка компаса начала двигаться. Таким образом, два отдельных феномена, электричество и магнетизм, которые до этого рассматривались совершенно раздельно, в действительности оказались связаны друг с другом. Эрстед продолжил свои исследования и опубликовал результаты в 1820 году.
    Новость об открытии Эрстеда распространилась очень быстро. Через несколько лет его статья была зачитана на собрании Французской академии наук. На этом собрании был и Ампер, который тут же начал работать над объяснением явления, обнаруженного Эрстедом. Теория была готова через неделю и послужила основой для объединения электричества и магнетизма в теорию электромагнетизма.
    Андре Мари Ампер (17751836) родился недалеко от Лиона. Его отец, состоятельный купец, занимавший должность мирового судьи в Лионе, был казнен во время Французской революции. Теперь дом Ампера превращен в музей и открыт для посещения. В детстве Ампер не ходил в школу, а приобрел свои знания путем чтения книг. Вот эпизод, говорящий о его прекрасной памяти и способностях к обучению. Будучи еще маленьким мальчиком, он отправился в Лионскую библиотеку и попросил книги знаменитых математиков — Эйлера и Бернулли. Библиотекарь объяснил мальчику, что это сложные математические книги, которые ему будет трудно понять, к тому же — они написаны на латинском языке. Новость о латинском языке смутила Ампера, но он решил, что незнание латинского языка не должно мешать ему. Спустя несколько недель он вернулся в библиотеку, уже зная латынь, и начал читать эти книги.
    Ампер женился в 24 года и содержал семью, работая школьным учителем. В 1808 году он был назначен инспектором школ и на этой должности оставался всю жизнь. Кроме того, он работал профессором в Париже. К 1820 году, когда Ампер заинтересовался электромагнетизмом, он был уже широко известен своими трудами по математике и химии. Этот разносторонний ученый начинал как профессор математики, затем стал профессором философии, а позднее — профессором астрономии! Начиная с 1824 года Ампер был уже профессором физики Коллеж де Франс.

    Ампер не удовлетворился только лишь объяснением результатов Эрстеда и начал свои исследования.

    Например, он показал, что, смотав электрический провод в виток, можно создать искусственный магнит — электромагнит, который действует точно так же, как естественные магниты. Ампер смело, но совершенно верно предположил, что естественные магниты содержат внутри себя небольшие витки непрерывного тока, которые действуют вместе и создают естественный магнетизм.
    Ампер сразу же понял важность феномена электромагнетизма в передаче информации. Включая и выключая ток, можно привести в движение стрелку компаса, находящегося довольно далеко. Послание может быть передано с такой скоростью, с какой распространяется электрический ток. Вскоре началось производство телеграфных аппаратов, работающих по этому принципу. Одна из первых телеграфных линий была протянута в 1834 году в Геттингене между лабораторией Вильгельма Вебера и астрономической обсерваторией Карла Фридриха Гаусса. В том же году первую коммерческую телеграфную линию, соединившую Вашингтон и Балтимор (США), наладил Сэмюэл Морзе, изобретатель азбуки Морзе.
    Другим ученым, сразу же оценившим огромное значение открытия Эрстеда, стал англичанин Майкл Фарадей. Он был сыном кузнеца и получил минимальное образование. В13 лет он стал подмастерьем переплетчика. Переплетая книги, он их читал. Один из клиентов дал ему бесплатный абонемент на посещение публичных лекций Гемфри Дэви (17781829). Фарадей сделал аккуратный конспект лекций, красиво переплел его и послал Дэви с запиской, в которой спрашивал, нет ли у Дэви работы для него. Каково же было удивление Фарадея, когда Дэви пригласил его к себе. Конспект был написан очень аккуратно и произвел на Дэви хорошее впечатление. В 1820 году он предложил мальчику должность своего ассистента в Королевском институте в Лондоне. Так началась одна из наиболее знаменитых карьер в науке. Говорили, что самым большим открытием Дэви был Фарадей.


    Фарадей учился у самого Дэви. Когда Дэви отправился в полуторагодичный тур на континент, он взял с собой Фарадея, который познакомился там, среди прочих, с Ампером и Вольтой. Когда Дэви работал в Париже с Луи ГейЛ юсе а ком, изучая новый химический элемент — йод, им помогал Фарадей. Впрочем, и дома в его служебные обязанности входило проведение химических опытов.
    Если не считать временного интереса к электромагнетизму, вызванного открытием Эрстеда, Фарадей до 1830 года был профессиональным химиком. В 1833 году он стал профессором химии в Королевском институте. Но к этому моменту его научные интересы уже поменялись. Фарадей был убежден, что если электрический ток может быть причиной возникновения магнитных сил, то и магнит должен быть способен создавать электрический ток. Это мнение разделяли многие, среди которых был и Ампер, не сумевший, однако, подтвердить эту захватывающую идею.
    В течение ю лет Фарадей проводил различные опыты по электромагнетизму. В 1831 году он вложил одну катушку внутрь другой. Когда по одной из катушек пускали ток, она становилась электромагнитом. Фарадей хотел выяснить, способен ли магнит вызвать появление электрического тока во второй катушке. Действительно, ток возникал, но лишь на мгновение — только при включении или выключении электромагнита. Это привело Фарадея к важному открытию: изменение магнита — например, изменение силы магнита или его вращение — генерирует электрический ток в соседней катушке. Ключевым моментом здесь было изменение магнита.
    Это позволило Фарадею сконструировать электрический генератор — простое динамо, ставшее в будущем основой электротехники. Однажды он демонстрировал свое открытие Уильяму Гладстону, который в то время был министром финансов, и тот спросил: «Ну и как же это можно использовать?» Фарадей ответил: «Вполне возможно, сэр, что когда-нибудь вы сможете обложить это налогом».